Ir al contenido

Documat


R-spaces and closedness/completeness of certain function spaces in the topology of uniform convergence

  • Singh, Davinder [1] ; Kohli, J. K. [1]
    1. [1] University of Delhi

      University of Delhi

      India

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 15, Nº. 2, 2014, págs. 155-166
  • Idioma: inglés
  • DOI: 10.4995/agt.2014.3029
  • Enlaces
  • Resumen
    • It is shown that the notion of an − cl R space (Demonstratio Math. 46(1) (2013), 229-244) fits well as a separation axiom between zero dimensionality and − 0 R spaces. Basic properties of − cl R spaces are studied and their place in the hierarchy of separation axioms that already exist in the literature is elaborated. The category of − cl R spaces and continuous maps constitutes a full isomorphism closed, monoreflective (epireflective) subcategory of TOP. The function space cl R (X, Y) of all − cl R supercontinuous functions from a space X into a uniform space Y is shown to be closed in the topology of uniform convergence. This strengthens and extends certain results in the literature (Demonstratio Math. 45(4) (2012), 947-952).

  • Referencias bibliográficas
    • A. V. Arhangel'skii, General Topology III, Springer-Verlag, Berlin, 1995. http://dx.doi.org/10.1007/978-3-662-07413-8
    • S. P. Arya and M. Deb, On mapping almost continuous in the sense of Frol’ık, Math. Student 41 (1973), 311–321.
    • C. E. Aull, Functionally regular spaces, Indag. Math. 38 (1976), 281–288. http://dx.doi.org/10.1016/1385-7258(76)90066-4
    • A. Császár, General Topology, Adam Higler Ltd., Bristol, 1978.
    • A. S. Davis, Indexed system of neighbourhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886–893. http://dx.doi.org/10.2307/2311686
    • Z. Frolík, Remarks concerning the invariance of Baire spaces under mapping, Czechoslovak Math. J. 11, no. 3 (1961), 381–385.
    • M. Ganster, On strongly s-regular spaces, Glasnik Mat. 25, no. 45 (1990), 195–201.
    • K. R. Gentry, and H. B. Hoyle, III, Somewhat continuous functions, Czechoslovak Math. J. 21, no. 1 (1971), 5–12.
    • N. C. Heldermann, Developability and some new regularity axioms, Can. J. Math. 33, no. 3 (1981), 641–663. http://dx.doi.org/10.4153/CJM-1981-051-9
    • H. B. Hoyle, III, Function spaces for somewhat continuous functions, Czechoslovak Math. J. 21, no. 1 (1971), 31–34.
    • H. Herrlich and G. E. Strecker, Category Theory An Introduction, Allyn and Bacon Inc. Bostan, 1973.
    • J. L. Kelly, General Topology, Van Nostrand, New York, 1955.
    • S. Kempisty, Sur les functions quasicontinuous, Fund. Math. 19 (1932), 184–197.
    • J. K. Kohli and J. Aggarwal, Closedness of certain classes of functions in the topology of uniform convergence, Demonstratio Math. 45, no....
    • J. K. Kohli and R. Kumar, z-supercontinuous functions, Indian J. Pure Appl. Math. 33, no. 7 (2002), 1097–1108.
    • J. K. Kohli and D. Singh, D-supercontinuous functions, Indian J. Pure Appl. Math. 32, no. 2 (2001), 227–235.
    • J. K. Kohli and D. Singh, D-supercontinuous functions, Indian J. Pure Appl. Math. 34, no. 7 (2003), 1089–1100.
    • J. K. Kohli and D. Singh, Between regularity and complete regularity and a factorization of complete regularity, Studii Si Cercetari Seria...
    • J. K. Kohli and D. Singh, Separation axioms between regular spaces and R0 spaces, preprint.
    • J. K. Kohli and D.Singh, Separation axioms between functionally regular spaces and R0 spaces, preprint.
    • J. K. Kohli, B. K. Tyagi, D. Singh and J. Aggarwal, R-supercontinuous functions, Demonstratio Math. 47, no. 2 (2014), 433–448.
    • N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 34–41. http://dx.doi.org/10.2307/2312781
    • J.Mack, Countable paracompactness and weak normality properties, Trans. Amer.Math. Soc. 148 (1970), 265–272. http://dx.doi.org/10.1090/S0002-9947-1970-0259856-3
    • A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, -continuous and -open mappings, Acta Math. Hungar. 41 1983, 213–218. http://dx.doi.org/10.1007/BF01961309
    • S. A. Naimpally, Function space topologies for connectivity and semiconnectivity functions , Canad. Math. Bull. 9 (1966), 349–352. http://dx.doi.org/10.4153/CMB-1966-044-4
    • S. A. Naimpally, Graph topology for function spaces, Trans. Amer. Math. Soc. 123 (1966), 267–272. http://dx.doi.org/10.1090/S0002-9947-1966-0192466-4
    • O. Njástad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970. http://dx.doi.org/10.2140/pjm.1965.15.961
    • N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk SSSR, 38 (1943), 110–113.
    • W. Sierpinski, Sur une propriété de functions réelles quelconques, Matematiche (Catania) 8 (1953), 43–48.
    • M. K. Singal and S. B. Niemse, z-continuous mappings, The Mathematics Student 66, no. 1-4 (1997), 193–210.
    • D. Singh, D*-supercontinuous functions, Bull. Cal. Math. Soc. 94, no. 2 (2002), 67–76.
    • D. Singh, cl-supercontinuous functions, Appl. Gen. Topol. 8, no. 2 (2007), 293–300. http://dx.doi.org/10.4995/agt.2007.1899
    • D. Singh, B. K. Tyagi, J. Aggarwal and J. K. Kohli, Rz-supercontinuous functions, Math. Bohemica, to appear.
    • J. R. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249–263.
    • R. Staum, The Algebra of bounded continuous functions into a nonarchimedean field, Pac. J. Math. 50, no. 1 (1974), 169–185. http://dx.doi.org/10.2140/pjm.1974.50.169
    • L. A. Steen and J. A. Seebach, Jr., Counter Examples in Topology, Springer Verlag, New York, 1978. http://dx.doi.org/10.1007/978-1-4612-6290-9
    • B. K. Tyagi, J. K. Kohli and D. Singh, Rcl-supercontinuous functions, Demonstratio Math. 46, no. 1 (2013), 229–244.
    • R. Vaidyanathswamy, Treatise on Set Topology, Chelsa Publishing Company, New York, 1960.
    • W. T. Van East and H. Freudenthal, Trennung durch stetige Functionen in topologishen Raümen, Indag. Math. 15 (1951), 359–368.
    • N. K. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78, no. 2 (1968), 103–118.
    • G. J. Wong, On S-closed spaces, Acta Math. Sinica, 24 (1981), 55–63.
    • C. T. Yang, On paracompact spaces, Proc. Amer. Math. Soc. 5, no. 2 (1954), 185–194. http://dx.doi.org/10.1090/S0002-9939-1954-0062418-0

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno