Ir al contenido

Documat


On almost cl-supercontinuous functions

  • Kanibir, A. [1] ; Reilly, Ivan L. [2]
    1. [1] Hacettepe University

      Hacettepe University

      Turquía

    2. [2] University of Auckland

      University of Auckland

      Nueva Zelanda

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 11, Nº. 1, 2010, págs. 57-65
  • Idioma: inglés
  • DOI: 10.4995/agt.2010.1728
  • Enlaces
  • Resumen
    • Recently the class of almost cl-supercontinuous functions between topological spaces has been studied in some detail. We conside rthis class of functions from the point of view of change(s) of topology. In particular, we conclude that this class of functions coincides with the usual class of continuous functions when the domain and codomain have been retopologized appropriately. Some of the consequences of this fact are considered in this paper.

  • Referencias bibliográficas
    • D. Carnahan, Locally nearly compact spaces, Boll. U.M.I. 4 (1972), 146–153.
    • J. Dontchev, M. Ganster and I. Reilly, More on almost s-continuity, Indian J. Math. 41 (1999), 139-146.
    • J. Dugundji, Topology, Allyn and Bacon, Boston, Mass. 1966.
    • E. Ekici, Generalization of perfectly continuous, regular set connected and clopen functions, Acta Math. Hungar. 107, no. 3 (2005), 193–205....
    • D. Gauld, M. Mrsevic, I. L. Reilly and M. K. Vamanamurthy, Continuity properties of functions, Coll. Math. Soc. Janos Bolyai 41 (1983), 311–322.
    • R. C. Jain, The role of regularly open sets in general topology, Ph.D. thesis, Meerut Univ., Institute of Advanced Studies, Meerut, India...
    • J. K. Kohli and D. Singh, Almost cl-supercontinuous functions, Appl. Gen. Topol. 10, no. 1, (2009), 1–12.
    • M. Mrsevic, I. L. Reilly and M. K. Vamanamurthy, On semi-regularization topologies, J. Austral. Math. Soc. A 38 (1985), 40–54. http://dx.doi.org/10.1017/S1446788700022588
    • B. M. Munshi and D. S. Bassan, Super-continuous mappings, Indian J. Pure Appl. Math. 13 (1982), 229–236.
    • T. Noiri, On continuous functions, J. Korean Math. Soc. 16 (1980), 161–166.
    • I. L. Reilly and M. K. Vamanamurthy, On super-continuous mappings, Indian J. Pure Appl. Math. 14, no. 6 (1983), 767–772.
    • M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. 3 (1968), 63–73.
    • D. Singh, cl-supercontinuous functions, Appl. Gen. Topol. 8, no. 2 (2007), 293–300.
    • A. Sostak, On a class of topological spaces containing all bicompact and connected spaces, General Topology and its relation to modern analysis...
    • R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math. 50 (1974), 169–185. http://dx.doi.org/10.2140/pjm.1974.50.169
    • N. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78, no. 2 (1968), 103-118.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno