Ir al contenido

Documat


Weak partial metric spaces and some fixed point results

  • Altun, Ishak [1] ; Durmaz, Gonca [1]
    1. [1] Kırıkkale University

      Kırıkkale University

      Turquía

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 13, Nº. 2, 2012, págs. 179-191
  • Idioma: inglés
  • DOI: 10.4995/agt.2012.1628
  • Enlaces
  • Resumen
    • The concept of partial metric p on a nonempty set X was introduced by Matthews. One of the most interesting properties of a partial metric is that p(x, x) may not be zero for x e X. Also, each partial metric p on a nonempty set X generates a T0 topology on X. By omitting the small self-distance axiom of partial metric, Heckmann defined the weak partial metric space. In the present paper, we give some fixed point results on weak partial metric spaces.

  • Referencias bibliográficas
    • I. Altun and A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory and Applications (2011),...
    • I. Altun and H. Simsek, Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud. 1 (2008), 1–8.
    • I. Altun, F. Sola and H. Simsek, Generalized contractions on partial metric spaces, Topology and its Applications 157 (2010), 2778–2785. http://dx.doi.org/10.1016/j.topol.2010.08.017
    • V. Berinde, Iterative Approximation of Fixed Points, Springer -Verlag Berlin Heidelberg, 2007.
    • M. H. Escardo, Pcf Extended with real numbers, Theoretical Computer Sciences 162 (1996), 79–115. http://dx.doi.org/10.1016/0304-3975(95)00250-2
    • G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973), 201–206. http://dx.doi.org/10.4153/CMB-1973-036-0
    • R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures 7 (1999), 71–83.
    • S. G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994),...
    • S. Oltra and O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Istid. Math. Univ. Trieste 36 (2004), 17–26.
    • S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory and Applications (2010), Article...
    • O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. General Topology 6 (2005), 229–240.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno