Ir al contenido

Documat


Some fixed point theorems on the class of comparable partial metric spaces

  • Karapinar, Erdal [1]
    1. [1] Atilim University

      Atilim University

      Turquía

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 12, Nº. 2, 2011, págs. 187-192
  • Idioma: inglés
  • DOI: 10.4995/agt.2011.1651
  • Enlaces
  • Resumen
    • In this paper we present existence and uniqueness criteria of a fixed point for a self mapping on a non-empty set endowed with two comparable partial metrics.

  • Referencias bibliográficas
    • T. Abdeljawad, E. Karapınar, K. Tas, Existence and uniqueness of common fixed point on partial metric spaces, Appl. Math. Lett. 24, no. 11...
    • I. Altun, F. Sola and H. Simsek, Generalized contractions on partial metric spaces, Topology Appl. 157, no. 18 (2010), 2778–2785. http://dx.doi.org/10.1016/j.topol.2010.08.017
    • E. Karapınar, Generalizations of Caristi Kirk’s Theorem on partial metric spaces, Fixed Point Theory Appl. 2011:4. http://dx.doi.org/10.1186/1687-1812-2011-4
    • E. Karapınar and I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24, no. 11 (2011), 1900–1904....
    • E. Karapınar, Weak o-contraction on partial contraction and existence of fixed points in partially ordered sets, Mathematica Aeterna 1(4),(2011),...
    • E. Karapınar, Weak o-contraction on partial metric spaces, J. Comput. Anal. Appl. (in press).
    • R. Kopperman, S. G. Matthews and H. Pajoohesh, What do partial metrics represent, Spatial representation: discrete vs. continuous computational...
    • H.-P. A. Künzi, H. Pajoohesh and M.P. Schellekens, Partial quasi-metrics, Theor. Comput. Sci. 365, no. 3 (2006), 237–246. http://dx.doi.org/10.1016/j.tcs.2006.07.050
    • M. G. Maia, Un’osservazione sulle contrazioni metriche, Rend. Sem. Mat. Univ. Padova 40 (1968), 139–143.
    • S. G. Matthews, Partial metric topology, Research Report 212, Dept. of Computer Science, University of Warwick, 1992.
    • S. G. Matthews, Partial metric topology, in: General Topology and its Applications, Proc. 8th Summer Conf., Queen’s College (1992), Annals...
    • S. J. O’Neill, Two topologies are better than one, Tech. report, University of Warwick, Coventry, UK, http://www.dcs.warwick.ac.uk/reports/283.html,...
    • S. Romaguera and M. Schellekens, Weightable quasi-metric semigroup and semilattices, Electron. Notes Theor. Comput. Sci. 40 (2001), 347–358....
    • M. P. Schellekens, A characterization of partial metrizability: domains are quantifiable, Theor. Comput. Sci. 305, no. 1-3 (2003), 409–432....
    • S. Oltra and O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Ist. Mat. Univ. Trieste 36, no. 1-2 (2004), 17–26.
    • O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol 6, no. 2 (2005), 229–240.
    • S. Oltra, S. Romaguera and E. A. Sánchez-Pérez, The canonical partial metric and uniform convexity on normed spaces, Appl. Gen. Topol. 6,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno