Ir al contenido

Documat


Uniformizable and realcompact bornological universes

  • Vroegrijk, Tom [1]
    1. [1] University of Antwerp

      University of Antwerp

      Arrondissement Antwerpen, Bélgica

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 10, Nº. 2, 2009, págs. 277-287
  • Idioma: inglés
  • DOI: 10.4995/agt.2009.1740
  • Enlaces
  • Resumen
    • Bornological universes were introduced some time ago by Hu and obtained renewed interest in recent articles on convergence in hyperspaces and function spaces and optimization theory. One o fHu's results gives us a necessary and sufficient condition for which a bornological universe is metrizable. In this article we will extend thi sresult and give a characterization of uniformizable bornological universes. Furthermore, a construction on bornological universes that the author used to find the bornological dual of function spaces endowed with the bounded-open topology will be used to define realcompactness for bornological universes. We will also give various characterizations of this new concept.

  • Referencias bibliográficas
    • G. Beer, Embeddings of bornological universes, Set-valued Analysis 16 (2008), 477–488. http://dx.doi.org/10.1007/s11228-007-0068-2
    • G. Beer, S. Naimpally, J. Rodríguez-López, S-topologies and bounded convergences, Journal of Mathematical Analysis and Applications 339 (2008),...
    • G. Beer, S. Levi, Gap, excess and bornological convergence, Set-Valued Analysis 16 (2008), 489-506. http://dx.doi.org/10.1007/s11228-008-0086-8
    • G. Beer, S. Levi, Pseudometrizable bornological convergence is Attouch-Wets convergence, Journal of Convex Analysis 15 (2008), 439–453.
    • G. Beer, S. Levi, Total boundedness and bornologies, Topology and its applications 156 (2009), 1271-1288. http://dx.doi.org/10.1016/j.topol.2008.12.030
    • G. Beer, M. Segura, Well-posedness, bornologies, and the structure of metric spaces, Applied general topology 10 (2009), 131–157.
    • G. Beer, S. Levi, Strong uniform continuity, Journal of Mathematical Analysis and Applications 350 (2009), 568–589. http://dx.doi.org/10.1016/j.jmaa.2008.03.058
    • N. Bourbaki, Topologie Générale, (Hermann, Paris, 1965).
    • L. Gilman, M. Jerison. Rings of Continuous Functions. (D. Van Nostrand Company, New York, 1960).
    • J. Hejcman, Boundedness in uniform spaces and topological groups, Czechoslovak Mathematical Journal 84 (1959), 544–563.
    • S. Hu, Boundedness in a topological space, Journal de Mathématiques Pures et Appliquées 28 (1949).
    • S. Hu, Introduction to General Topology, (Holden-Day, San Francisco, 1966).
    • J. Schmets, Espaces de fonctions continues, Lecture Notes in Mathematics 519 (1976).
    • A. Lechicki, S. Levi, A. Spakowski, Bornological convergences, Journal of Mathematical Analysis and Applications 297 (2004), 751–770. http://dx.doi.org/10.1016/j.jmaa.2004.04.046
    • T. Vroegrijk, Pointwise bornological spaces, Topology and its Applications 156 (2009), 2019–2027. http://dx.doi.org/10.1016/j.topol.2009.03.040
    • T. Vroegrijk, Pointwise bornological vector spaces, Topology and its applications, to appear.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno