Ir al contenido

Documat


Well-posedness, bornologies, and the structure of metric spaces

  • Beer, Gerald [1] ; Segura, Manuel [1] Árbol académico
    1. [1] California State University Los Angeles

      California State University Los Angeles

      Estados Unidos

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 10, Nº. 1, 2009, págs. 131-157
  • Idioma: inglés
  • DOI: 10.4995/agt.2009.1793
  • Enlaces
  • Resumen
    • Given a continuous nonnegative functional λ that makes sense defined on an arbitrary metric space (X, d), one may consider those spaces in which each sequence (xn) for which lim n→∞λ(xn) = 0 clusters. The compact metric spaces, the complete metric spaces, the cofinally complete metric spaces, and the UC-spaces all arise in this way. Starting with a general continuous nonnegative functional λ defined on (X, d), we study the bornology Bλ of all subsets A of X on which limn→∞λ(an) = 0 ⇒ (an) clusters, treating the possibility X ∈ Bλ as a special case. We characterize those bornologies that can be expressed as Bλ  for some λ, as well as those that can be so induced by a uniformly continuous λ.

  • Referencias bibliográficas
    • M.Atsuji, Uniform continuity of continuous functions of metric spaces, Pacific J. Math. 8 (1958), 11-16.
    • http://dx.doi.org/10.2140/pjm.1958.8.11
    • H. Attouch, R. Lucchetti and R. Wets, The topology of the -Hausdorff distance, Ann. Mat. Pura Appl. 160 (1991), 303–320.
    • http://dx.doi.org/10.1007/BF01764131
    • H. Attouch and R. Wets, Quantitative stability of variational systems: I. The epigraphical distance, Trans. Amer. Math. Soc. 328 (1991), 695–730.
    • J. Banas and K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, New York-Basel, 1980.
    • PMid:6986746
    • G. Beer, Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance, Proc. Amer. Math. Soc. 95 (1985), 653–658.
    • http://dx.doi.org/10.1090/S0002-9939-1985-0810180-3
    • G. Beer, More about metric spaces on which continuous functions are uniformly continuous, Bull. Australian Math. Soc. 33 (1986), 397–406.
    • http://dx.doi.org/10.1017/S0004972700003981
    • G. Beer, UC spaces revisited. Amer. Math. Monthly 95 (1988), 737–739.
    • http://dx.doi.org/10.2307/2322255
    • G. Beer, Topologies on closed and closed convex sets, Kluwer Academic Publishers, Dordrecht, Holland, 1993.
    • G. Beer, On metric boundedness structures, Set-Valued Anal. 1 (1999), 195–208.
    • http://dx.doi.org/10.1023/A:1008720619545
    • G. Beer, Between compactness and completeness, Top. Appl. 155 (2008), 503–514.
    • http://dx.doi.org/10.1016/j.topol.2007.08.020
    • G. Beer, Operator topologies and graph convergence, J. Convex Anal., to appear.
    • G. Beer, C. Costantini and S. Levi, When is bornological convergence topological?, preprint. G. Beer and G. DiMaio, Cofinal completeness of...
    • G. Beer and S. Levi, Pseudometrizable bornological convergence is Attouch-Wets convergence, J. Convex Anal. 15 (2008), 439–453.
    • G. Beer and S. Levi, Strong uniform continuity, J. Math. Anal. Appl. 350 (2009), 568–589.
    • http://dx.doi.org/10.1016/j.jmaa.2008.03.058
    • G. Beer, S. Naimpally and J. Rodríguez-López, S-topologies and bounded convergences, J. Math. Anal. Appl. 339 (2008), 542–552.
    • http://dx.doi.org/10.1016/j.jmaa.2007.07.010
    • J. Borwein and J. Vanderwerff, Epigraphical and uniform convergence of convex functions, Trans. Amer. Math. Soc. 348 (1996), 1617–1631.
    • http://dx.doi.org/10.1090/S0002-9947-96-01581-4
    • B. Burdick, On linear cofinal completeness, Top. Proc. 25 (2000), 435–455.
    • G. Di Maio, E. Meccariello, and S. Naimpally, Uniformizing (proximal) △-topologies, Top. Appl. 137 (2004), 99–113.
    • http://dx.doi.org/10.1016/S0166-8641(03)00202-5
    • A. Dontchev and T. Zolezzi, Well-posed optimization problems, Lecture Notes in Mathematics 143, Springer-Verlag, Berlin 1993.
    • J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
    • H. Hogbe-Nlend, Bornologies and functional analysis, North-Holland, Amsterdam, 1977.
    • A. Hohti, On uniform paracompactness, Ann. Acad. Sci. Fenn. Series A Math. Diss. 36 (1981), 1–46.
    • N. Howes, Modern analysis and topology, Springer, New York, 1995.
    • http://dx.doi.org/10.1007/978-1-4612-0833-4
    • S.-T. Hu, Boundedness in a topological space, J. Math Pures Appl. 228 (1949), 287–320.
    • S.-T. Hu, Intoduction to general topology, Holden-Day, San Francisco, 1966.
    • T. Jain and S. Kundu, Atsuji spaces: equivalent conditions, Topology Proc. 30 (2006), 301–325.
    • E. Klein and A. Thompson, Theory of correspondences, Wiley, New York, 1984.
    • K. Kuratowski, Topology vol. 1, Academic Press, New York, 1966.
    • A. Lechicki, S. Levi and A. Spakowski, Bornological convergences, J. Math. Anal. Appl. 297 (2004), 751–770.
    • http://dx.doi.org/10.1016/j.jmaa.2004.04.046
    • R. Lucchetti, Convexity and well-posed problems, Springer Verlag, Berlin, 2006.
    • S. Nadler and T. West, A note on Lesbesgue spaces, Topology Proc. 6 (1981), 363–369.
    • J.-P. Penot and C. Z˘alinescu, Bounded (Hausdorff) convergence : basic facts and applications, in Variational analysis and applications, F....
    • http://dx.doi.org/10.1007/0-387-24276-7_49
    • J. Rainwater, Spaces whose finest uniformity is metric, Pacific J. Math 9 (1959), 567–570.
    • http://dx.doi.org/10.2140/pjm.1959.9.567
    • M. Rice, A note on uniform paracompactness, Proc. Amer. Math. Soc. 62 (1977), 359–362.
    • http://dx.doi.org/10.1090/S0002-9939-1977-0436085-3
    • S. Romaguera, On cofinally complete metric spaces, Q & A in Gen. Top. 16 (1998), 165–170.
    • G. Toader, On a problem of Nagata, Mathematica (Cluj) 20 (1978), 77–79.
    • W. Waterhouse, On UC spaces, Amer. Math. Monthly 72 (1965), 634–635.
    • http://dx.doi.org/10.2307/2313854

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno