Ir al contenido

Documat


The local triangle axiom in topology and domain theory

  • Waszkiewicz, Pawel [1]
    1. [1] University of Birmingham

      University of Birmingham

      Reino Unido

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 4, Nº. 1, 2003, págs. 47-70
  • Idioma: inglés
  • DOI: 10.4995/agt.2003.2009
  • Enlaces
  • Resumen
    • We introduce a general notion of distance in weakly separated topological spaces. Our approach differs from existing ones since we do not assume the reflexivity axiom in general. We demonstrate that our partial semimetric spaces provide a common generalization of semimetrics known from Topology and both partial metrics and measurements studied in Quantitative Domain Theory. In the paper, we focus on the local triangle axiom, which is a substitute for the triangle inequality in our distance spaces. We use it to prove a counterpart of the famous Archangelskij Metrization Theorem in the more general context of partial semimetric spaces. Finally, we consider the framework of algebraic domains and employ Lebesgue measurements to obtain a complete characterization of partial metrizability of the Scott topology.

  • Referencias bibliográficas
    • S. Abramsky and A. Jung, Domain theory, In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,...
    • A. V. Archangelskij (Arhangel'skii), Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162. http://dx.doi.org/10.1070/RM1966v021n04ABEH004169
    • E. W. Chittenden, On the equivalence of Écart and voisinage, Trans. Amer. Math. Soc. 18 (1917), 161-166.
    • E. W. Chittenden, On the foundations of the calcul fonctionnel of Fréchet, Trans. Amer. Math. Soc. 19 (1918), 66-78.
    • B. Flagg and R. Kopperman, Continuity spaces: Reconciling domains and metric spaces, Theoretical Computer Science 177 (1) (1997), 111-138....
    • R. C. Flagg, Quantales and continuity spaces, Algebra Universalis 37 (3) (1997), 257- 276. http://dx.doi.org/10.1007/s000120050018
    • M. R. Fréchet, Les ensembles abstraits et le calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo 30 (1910), 22-23. http://dx.doi.org/10.1007/BF03014860
    • G. Gruenhage, Generalized Metric Spaces, In K. Kunen and J. E. Vaughan, editors, Handbook of Set Theoretic Topology (Elsevier Science Publishers,...
    • R. Heckmann, Approximation of metric spaces by partial metric spaces, Applied Categorical Structures 7 (1999), 71-83. http://dx.doi.org/10.1023/A:1008684018933
    • H-P. Künzi and V. Vajner, Weighted quasi-metrics, In Proceedings of the 8th Summer Conference on Topology and its Applications 728 (1992),...
    • J. D. Lawson, The round ideal completion via sobrification, In Proceedings of the 12th Summer Conference on General Topology and its Applications,...
    • H. W. Martin, Metrization of symmetric spaces and regular maps, Proc. Amer. Math. Soc. 35 (1) (1972), 269-274. http://dx.doi.org/10.1090/S0002-9939-1972-0303511-5
    • K. Martin. A Foundation for Computation. PhD thesis (Department of Mathematics, Tulane University, New Orleans, LA 70118, 2000).
    • S. G. Matthews, Partial metric topology, In Proceedings of the 8th Summer Conference on Topology and its Applications 728 (1992), 176-185.
    • V. V. Niemytzki, On the “third axiom of metric space”, Trans. Amer. Math. Soc. 29 (1927), 507-513.
    • S. J. O'Neill, Partial metrics, valuations and domain theory, Research Report CS-RR- 293 (Department of Computer Science, University of...
    • S. J. O'Neill, Two topologies are better than one, Research Report CS-RR-283 (Department of Computer Science, University of Warwick, Coventry,...
    • J. J. M. M. Rutten, Elements of generalized ultrametric domain theory, Technical Report CS-R9507 (CWI, Amsterdam, 1995).
    • M.P. Schellekens, A characterization of partial metrizability. Domains are quantifiable, To appear in Theoretical Computer Science.
    • M.P. Schellekens, The correspondence between partial metrics and semivaluations, To appear in Theoretical Computer Science.
    • M. B. Smyth, Quasi-uniformities: Reconciling Domains and Metric Spaces, In M. Main, A. Melton, M. Mislove, and D. Schmidt, editors, Proceedings...
    • M. B. Smyth, Semi-metrics, closure spaces and digital topology, Theoretical Computer Science 151 (1995), 257-276. http://dx.doi.org/10.1016/0304-3975(95)00053-Y
    • K. R. Wagner, Liminf convergence in Ω-categories, Theoretical Computer Science 184 (1-2) (1997), 61-104. Fundamental Study. http://dx.doi.org/10.1016/S0304-3975(96)00223-X
    • P.Waszkiewicz, Distance and measurement in domain theory, In S. Brookes and M. Mislove, editors, 17th Conference on the Mathematical Foundations...
    • P. Waszkiewicz, Quantitative Continuous Domains, PhD thesis (School of Computer Science, The University of Birmingham, Edgbaston, Birmingham...
    • S. Willard, General Topology, Addison-Wesley Series in Mathematics (Addison-Wesley, 1970).
    • W. A. Wilson, On semi-metric spaces, Trans. Amer. Math. Soc. 53 (1931), 361-373.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno