Ir al contenido

Documat


Networking theories by iterative unpacking.

  • Autores: Boris Koichu
  • Localización: PNA: Revista de investigación en didáctica de la matemática, ISSN-e 1887-3987, Vol. 8, Nº. 4, 2014, págs. 151-161
  • Idioma: inglés
  • DOI: 10.30827/pna.v8i4.6112
  • Títulos paralelos:
    • Teorías de conexión mediante análisis iterativo.
  • Enlaces
  • Resumen
    • español

      Una estrategia de análisis iterativo consiste en una secuenciación de avances teóricos con base empírica. Así, cada avance en una teoría sirve para organizar un marco conceptual, en el que otra teoría, existente o emergente, queda embebida con el propósito de ampliar los elementos de la teoría global. En este artículo, presentamos esta estrategia por medio de reflexiones sobre cómo se utilizó en varios estudios empíricos y por medio de un no-ejemplo. El artículo concluye con una discusión sobre los puntos fuertes y las limitaciones de la estrategia.

    • English

      An iterative unpacking strategy consists of sequencing empirically-based theoretical developments so that at each step of theorizing one theory serves as an overarching conceptual framework, in which another theory, either existing or emerging, is embedded in order to elaborate on the chosen element(s) of the overarching theory. The strategy is presented in this paper by means of reflections on how it was used in several empirical studies and by means of a non-example. The article concludes with a discussion of affordances and limitations of the strategy.

  • Referencias bibliográficas
    • Bikner-Ahsbahs, A., & Prediger, S. (2006). Diversity of theories in mathematics education-how can we deal with it? ZDM, 38(1), 52-57.
    • Carlson, M., & Bloom, I. (2005). The cyclic nature of problem solving: An emergent multidimensional problem-solving framework. Educational...
    • Crespo, S., & Sinclair, N. (2008). What makes a problem mathematically interesting? Inviting prospective teachers to pose better problems....
    • English, L. D. (1998). Children's problem posing within formal and informal contexts. Journal for Research in Mathematics Education, 29(1),...
    • Goldin, G. A. (2002) Affect, meta-affect, and mathematical belief structures. In G. C. Leder, E. Penkonen, & G. Torner (Eds.), Beliefs:...
    • Hershkowitz, R., Schwarz, B., & Dreyfus, T. (2001). Abstraction in context: Epistemic actions. Journal for Research in Mathematics Education,...
    • Kidron, I., Bikner-Ahsbahs, A., & Dreyfus, T. (2011). How a general epistemic need leads to a need for a new construct: A case of networking...
    • Koichu, B. (2010). On the relationships between (relatively) advanced mathematical knowledge and (relatively) advanced problem solving behaviours....
    • Koichu, B., Berman, A., & Moore, M. (2007). Heuristic literacy development and its relation to mathematical achievements of middle school...
    • Koichu, B., & Kontorovich, I. (2012). Dissecting success stories on mathematical problem posing: A case of the billiard task. Educational...
    • Koichu, B., & Leron, U. (submitted). Proving as problem solving: The role of cognitive decoupling.
    • Kontorovich, I., & Koichu, B. (2009). Towards a comprehensive framework of mathematical problem posing. In M. Tzekaki, M. Kaldrimidou,...
    • Kontorovich, I., Koichu, B., Leikin, R., & Berman, A. (2012). A framework for handling the complexity of students' mathematical problem...
    • Kuhn, T. (1962/2012). The structure of scientific revolutions. 50th anniversary (4th ed.). Chicago, IL: University of Chicago Press.
    • Ovadia, T. (2014). Learning mathematical problem solving strategies and their implication in solving similar problems: the case of “weak”...
    • Pólya, G. (1945/1973). How to solve it. Princeton, NJ: Princeton University Press.
    • Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: First...
    • Schoenfeld, A. H. (1985). Mathematical problem solving. Clinton, NY: Academic Press.
    • Simon, M., Saldanha, L., McClintock, E., Akar, G. K., Watanabe, T., & Zembat, I. O. (2010). A developing approach to studying students'...
    • Steffe, L. P. (2003). Fractional commensurate, composition, and adding schemes: Learning trajectories of Jason and Laura: Grade 5. Journal...
    • Stoyanova, E., & Ellerton, N. F. (1996). A framework for research into students' problem posing in school mathematics. In P. Clarkson...
    • Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of rate. In G. Harel & J. Confrey (Eds.),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno