Ir al contenido

Documat


Algebra and Proof in High School: The Case of Algebraic Proof as Discovery.

  • Autores: Mara V. Martínez
  • Localización: REDIMAT, ISSN-e 2014-3621, Vol. 3, Nº. 1, 2014, págs. 30-53
  • Idioma: inglés
  • Títulos paralelos:
    • Álgebra y Prueba en la Secundaria: el Caso de la Demostración Algebráica como Descubrimiento.
  • Enlaces
  • Resumen
    • English

      In the United States, students' learning experiences around proof is generally concentrated in the domain of high school geometry with a focus on its verification function. Thus, providing students with a limited conception of what proof entails and the role that it plays in performing mathematics. Moreover, there is a lack of U.S.-based studies addressing how to integrate proof into other mathematical domains within the high school curriculum. In this paper, the author reports results from an interview at the end of a teaching experiment which was designed to integrate algebra and proof into the high school curriculum. Algebraic proof was envisioned as the vehicle that would provide high school students the opportunity to learn about proof in a context other than geometry. Results indicate that most students were able to produce an algebraic proof involving variables and a parameter and its multiples. In doing so, students experienced the discovery function of proof.

    • English

      En USA las experiencias de aprendizaje de los estudiantes sobre demostración se concentran generalmente en el dominio de la geometría de secundaria, con énfasis en su función de verificación. Sin embargo, se les da una concepción limitada de lo que significa. Es más, existe una falta de estudios en USA sobre cómo integrar el uso de las demostraciones en otros dominios de las matemáticas dentro del currículum de secundaria. En este artículo se presentan resultados de una entrevista realizada al final de un experimento de enseñanza que fue diseñado para integrar el álgebra y la demostración en el currículum de secundaria. La demostración algebraica se presenta como un vehículo que puede aportar la oportunidad de aprender sobre la demostración en otros contextos que no sean la geometría. Los resultados indican que la mayoría de los estudiantes son capaces de producir demostraciones algebraicas que involucran variables y parámetros. Haciendo esto, los estudiantes experimentan el descubrimiento de la función de las demostraciones.

  • Referencias bibliográficas
    • Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(3), 24-35.
    • Arsac, G, Chapiron, G., Colonna, A., Germain, G., Guichard, Y., & Mante, M. (1992). Initiation au raisonnement déductif au collège. Lyon,...
    • Balacheff, N. (1982). Preuve and demonstration en mathematiques au college. Recherche en Didactique des Mathématiques, 3(3), 261-304.
    • Balacheff, N. (1988). Aspects of proof in pupils' practice of school mathematics. In D. Pimm (Ed.), Mathematics, Teachers and Children....
    • Barallobres, G. (2004). La validation intellectuelle dans l'enseignement introductif de l'algèbre. Recherches en Didactique des Mathematiques,...
    • Bednarz, N. (2001). A problem-solving approach to algebra: Accounting for the reasonings and notations developed by students. In H. Chick,...
    • Bell, A. (1995). Purpose in school algebra. Journal of Mathematical Behavior, 14(1), 41-73. doi: 10.1016/0732-3123(95)90023-3
    • Boero, P, Garuti, R, & Lemut, E. (2007). Approaching theorems in grade VIII: Some mental processes underlying producing and proving conjectures,...
    • Boero, P, Garuti, R, & Mariotti, M. A. (1996). Some dynamic mental processes underlying producing and proving conjectures. In L. Puig...
    • Booth, L.R. (1984). Algebra: Children's strategies and errors. Windsor, UK.: NFER-Nelson.
    • Chevallard, Y. (1985). Le Passage de l'arithmétique a l'algébrique dans l'enseignement des mathématiques au collége. Petit X,...
    • Chevallard, Y. (1989). Le Passage de l'arithmétique a l'algébrique dans l'enseignement des mathématiques au collége. Petit X,...
    • De Villiers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24, 7-24.
    • De Villiers, M. (2012). An illustration of the explanatory and discovery functions of proof. Pythagoras, 33(3), 8. doi: 10.4102/pythagoras.v33i3.193
    • Filloy, E, & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. For the Learning of Mathematics, 9(2), 19-25.
    • Filloy, E, Rojano, T, & Puig, L. (2008). Educational algebra: A theoretical and empirical approach. New York, NY: Springer.
    • Filloy, E, Rojano, T, & Solares, A. (2010). Problems dealing with unknown quantities and two different levels of representing unknowns....
    • Friedlander, A, & Hershkowitz, R. (1997). Reasoning with algebra. The Mathematics Teacher, 90(6), 442-447.
    • Friedlander, A., Tabach, M., Cuoco, A., & Curcio, F. (2001). Promoting multiple representations in algebra. In Anonymous (Ed.), (Vol....
    • Glaser, B., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago, IL: Aldine.
    • Gutiérrez, A., & Boero, P. (2006). Handbook of resarch on the psychology of mathematics education. Past, present and future. PME 1976-2006....
    • Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6-13.
    • Hanna, G. (2007). The ongoing value of proof. In P. Boero (Ed.), Theorems in school: From history, epistemology, and cognition to classroom...
    • Hanna, G., & Barbeau, E. (2008). Proofs as bearers of mathematical knowledge. ZDM, 40(3), 354-353. doi: 10.1007/s11858-008-0080-5
    • Harel, G., & Sowder, L. (1998). Students' proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput & E....
    • Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396-428.
    • Herbst, P. (2002). Engaging students in proving: A double bind on the teacher. Journal for Research in Mathematics Education, 33(3), 176-203.
    • Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington, D.C.: National Academy...
    • Kuchemann, D. (1981). Algebra. In K. Hart (Ed.), Children's understanding of mathematics: 11-16 (pp. 102-119). London, U.K.: John Murray.
    • Lee, L. (1996). An inititation into algebraic culture through generalization activities. In N. Berdnardz, C. Kieran & L. Lee (Eds.), Approaches...
    • Martinez, M.V. & Castro Superfine, A. (2012). Integrating algebra and proof in high school: Students' work with multiple variable...
    • Martinez, M. (2011). Integrating algebra and proof in high school: A teaching experiment. Saarbrücken, Germany: Lambert Academic Publishing.
    • Martinez, M.V., Brizuela, B.M., & Castro Superfine, A. (2011). Integrating algebra and proof in high school mathematics: An exploratory...
    • Martinez, M., & Li, W. (2010). Fostering mathematical inquiry: Focus on teacher’s interventions. Paper presented at the Learning in the...
    • Mason, J. (1996). Expressing generality and roots of algebra. In N. Berdnardz, C. Kieran & L. Lee (Eds.), Approaches to algebra (pp. 65)....
    • National Council of Teachers of Mathematics. (2009). Focus in high school mathematics: Reasoning and sense making. Reston, VA: National Council...
    • National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington,...
    • Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM, 40(3), 385-400. doi: 10.1007/s11858-008-0085-0
    • Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(1), 5-41. doi: 10.1093/philmat/7.1.5
    • Schwartz, J. L., & Yerushalmy, M. (1992). Getting students to function in and with algebra. In E. Dubinsky & G. Harel (Eds.), The...
    • Stacey, K., Chick, H., & Kendal, M. (2004). The future of the teaching and learning of algebra: The 12th ICMI study. Boston, MA: Kluwer...
    • Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. A. (2009). Implementing standards-based mathematics instruction: A casebook...
    • Stylianou, D, Blanton, M., & Knuth, E. J. (Eds.). (2009). Teaching and learning proof across the grades: A K-16 perspective. New York,...
    • Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In A. F. Coxford & A. P. Shulte (Eds.), The ideas of algebra:...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno