Ir al contenido

Documat


Analytic capacity, rectifiability, and the Cauchy integral

  • Autores: Xavier Tolsa Domènech Árbol académico
  • Localización: Proceedings oh the International Congress of Mathematicians: Madrid, August 22-30,2006 : invited lectures / coord. por Marta Sanz Solé Árbol académico, Javier Soria de Diego Árbol académico, Juan Luis Varona Malumbres Árbol académico, Joan Verdera Árbol académico, Vol. 2, 2006, ISBN 978-3-03719-022-7, págs. 1505-1528
  • Idioma: inglés
  • Enlaces
  • Resumen
    • A compact set E �¼ C is said to be removable for bounded analytic functions if for any open set  containing E, every bounded function analytic on  \ E has an analytic extension to . Analytic capacity is a notion that, in a sense, measures the size of a set as a non removable singularity. In particular, a compact set is removable if and only if its analytic capacity vanishes. The so-called Painleve problem consists in characterizing removable sets in geometric terms. Recently many results in connection with this very old and challenging problem have been obtained. Moreover, it has also been proved that analytic capacity is semiadditive. We review these results and other related questions dealing with rectifiability, the Cauchy transform, and the Riesz transforms.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno