Ir al contenido

Documat


Layers of Generality and Types of Generalization in Pattern Activities

  • Autores: Luis Radford Árbol académico
  • Localización: PNA: Revista de investigación en didáctica de la matemática, ISSN-e 1887-3987, Vol. 4, Nº. 2, 2010, págs. 37-62
  • Idioma: español
  • Enlaces
  • Resumen
    • Pattern generalization is considered one of the prominent routes for introducing students to algebra. However, not all generalizations are algebraic. In the use of pattern generalization as a route to algebra, we �teachers and educators� thus have to remain vigilant in order not to confound algebraic generalizations with other forms of dealing with the general. But how to distinguish between algebraic and non-algebraic generalizations? On epistemological and semiotic grounds, in this article I suggest a characterization of algebraic generalizations. This characterization helps to bring about a typology of algebraic and arithmetic generalizations. The typology is illustrated with classroom examples.

  • Referencias bibliográficas
    • Arzarello, F., & Edwards, L. (2005). Gesture and the construction of mathematical meaning. In H. Chick & J. Vincent (Eds.), Proceedings...
    • Arzarello, F., & Robutti, O. (2001). From body motion to algebra through graphing. In H. Chick, K. Stacey, J. Vincent, & J. Vincent...
    • Bakhtin, M. (1990). Art and Answerability. Austin, TX: University of Texas Press.
    • Barallobres, G. (2005). La validation intellectuelle dans l'enseignement introductif de l'algèbre. Recherche en Didactiques des Mathématiques,...
    • Bardini, C., Radford, L., & Sabena, C. (2005). Struggling with variables, parameters, and indeterminate objects or how to go insane in...
    • Bartolini-Bussi, M. G. (1995). Analysis of classroom interaction discourse from a Vygotskian perspective. In L. Meira & D. Carraher (Eds.),...
    • Bednarz, N., & Janvier, B. (1996). Emergence and development of algebra as a problem-solving tool: continuities and discontinuities with...
    • Boero, P. (2001). Transformation and anticipation as key processes in algebraic problem solving. In R. Sutherland, T. Rojano, A. Bell, &...
    • Carraher, D., Schliemann, A., & Brizuela, B. (2001). Can young students operate on unknowns? In M. V. D. Heuvel-Panhuizen (Ed.), Proceedings...
    • Castro, E. (1995). Exploración de patrones numéricos mediante configuraciones puntuales. Granada, Spain: Mathema.
    • Duval, R. (2002). L’apprentissage de l’algèbre et le problème cognitif de la signification des objets. In J. P. Drouhard & M. Maurel (Eds.),...
    • Filloy, E., & Rojano, T. (1989). Solving equations: the transition from arithmetic to algebra. For the Learning of Mathematics, 9(2),...
    • Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.
    • Goldin-Meadow, S. (2003). Hearing gesture. How our hands help us think. Cambridge, MA: The Belknap Press of Harvard University Press.
    • Gray, E., & Tall, D. (1994). Duality, ambiguity and flexibility: a proceptual view of simple arithmetic. Journal for Research in Mathematics...
    • Hegel, G. W. F. (1977). The phenomenology of spirit. Oxford, United Kingdom: Oxford University Press.
    • Hoopes, J. (Ed.). (1991). Peirce on signs. Chapel Hill: The University of North Carolina Press.
    • Høyrup, J. (2002). Lengths, widths, surfaces. A portrait of old Babylonian algebra and its kin. New York: Springer.
    • Innis, R. E. (1985). Semiotics. An introductory anthology. Bloomington, IN: Indiana University Press.
    • Kant, I. (1929). Critique of pure reason (N. K. Smith, Trans.). New York, NY: St. Marin’s Press. (Original work published in 1781 and 1787)
    • Kant, I. (1974). Logic. Indianapolis, IN: The Bobbs-Merrill Company.
    • Kaput, J., & Sims-Knight, J. (1983). Errors in translations to algebraic equations: roots and implications. Focus on Learning Problems...
    • Kendon, A. (2004). Gesture: Visible action as utterance. Cambridge: Cambridge University Press.
    • Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317-326.
    • Kieran, C. (1989). A perspective on algebraic thinking. In G Vernand, J., Rogalski, & M. Artigue (Eds.), Proceedings of the 13th International...
    • Kita, S. (2003). Pointing. Where language, culture, and cognition meet. Mahwah, NJ: Lawrence Erlbaum.
    • Lee, L. (1996). An initiation into algebraic culture through generalization activities. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches...
    • Lerman, S. (1996). Intersubjectivity in mathematics learning: a challenge to the radical constructivist paradigm? Journal for Research in...
    • Lins, R. (2001). The production of meaning for algebra: a perspective based on a theoretical model of semantic fields. In R. Sutherland, T....
    • R. Lins, (Eds.), Perspectives on school algebra (pp. 37-60). Dordrecht, The Netherlands: Kluwer.
    • Love, E. (1986). What is algebra? Mathematics Teaching, 117, 48-50.
    • MacGregor, M., & Stacey, K. (1992). A comparison of pattern-based and equation-solving approaches to algebra. In B. Southwell, K. Owens,...
    • MacGregor, M., & Stacey, K. (1995). The effect of different approaches to algebra on students’ perception of functional relationships....
    • Martzloff, J. C. (1997). A history of Chinese mathematics. Berlin: Springer.
    • Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C.
    • Kieran, & L. Lee (Eds.), Approaches to algebra (pp. 65-86). Dordrecht, The Netherlands: Kluwer.
    • Matz, M. (1980). Towards a computational theory of algebraic competence. Journal of Mathematical Behavior, 3(1), 93-166.
    • McNeill, D. (2000). Language and gesture. Cambridge: Cambridge University Press.
    • Peirce, C. S. (1931-1958). CP = Collected Papers, vol. I-VIII. Cambridge, Mass: Harvard University Press.
    • Poincaré, H. (1968). La science et l’hypothèse. Paris: Flammarion.
    • Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.
    • Presmeg, N. C. (2006). Research on visualization in learning and teaching mathematics. In A. Gutiérrez & P. Boero (Eds.), Handbook of...
    • Puig, L. (2004, July). History of algebraic ideas and research on educational algebra. Regular lecture presented at ICME-10, Copenhagen. Available...
    • Radford, L. (2001). The historical origins of algebraic thinking. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives...
    • Radford, L. (2002a). Algebra as tekhne. Artefacts, symbols and equations in the classroom. Mediterranean Journal for Research in Mathematics...
    • Radford, L. (2002b). On heroes and the collapse of narratives. A contribution to the study of symbolic thinking. In A. D. Cockburn & E....
    • Radford, L. (2002c). The seen, the spoken and the written. A semiotic approach to the problem of objectification of mathematical knowledge....
    • Radford, L. (2003). Gestures, speech and the sprouting of signs. Mathematical Thinking and Learning, 5(1), 37-70.
    • Radford, L. (2005a). The semiotics of the schema. Kant, Piaget, and the calculator. In M. H. G. Hoffmann, J. Lenhard, & F. Seeger (Eds.),...
    • Radford, L. (2005b). Why do gestures matter? Gestures as semiotic means of objectification. In H. Chick & J. Vincent (Eds.), Proceedings...
    • Radford, L. (2006). The anthropology of meaning. Educational Studies in Mathematics, 61(1-2), 39-65.
    • Radford, L. (2008). The ethics of being and knowing: towards a cultural theory of learning. In L. Radford, G. Schubring, & F. Seeger (Eds.),...
    • Radford, L., & Demers, S. (2004). Communication et apprentissage. Repères conceptuels et pratiques pour la salle de classe de mathématiques....
    • Radford, L., Bardini, C., & Sabena, C. (2007). Perceiving the general: the multisemiotic dimension of students’ algebraic activity. Journal...
    • Radford, L., & Puig, L. (2007). Syntax and meaning as sensuous, visual, historical forms of algebraic thinking. Educational Studies in...
    • Rivera, F. (2006). Sixth Graders’ ability to generalize patterns in algebra: issues and insights. In J. Novotná, H. Moraová, M. Krátká, &...
    • Robutti, O. (2009). Space-time representations in young children: Thinking through gestures and graphs. In C. Andersen, N. Scheuer, M. Echeverría,...
    • Roth, M. W. (2001). Gestures: their role in teaching and learning. Review of Educational Research, 71(3), 365-392.
    • Roth, M.-W. (2006). On the relation of abstract and concrete and the contradiction of a double ascension: a dialectical approach to mathematical...
    • Sabena, C., Radford, L., & Bardini, C. (2005). Synchronizing gestures, words and actions in pattern generalizations. In H. L. Chick &...
    • Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin....
    • Ursini, S., & Trigueros, M. (2001). A model for the uses of variable in elementary algebra. In M. van den Heuvel-Panhuizen (Ed.), Proceedings...
    • Vergnaud, G. (1996). Au fond de l’apprentissage, la conceptualisation. In R. Noirfalise & M. J. PerrinGlorian (coord.), Actes de l’École...
    • Vygotsky, L. S. (1962). Thought and language. Cambridge: MIT Press.
    • Wagner, S., & Kieran, C. (Eds.). (1989). Research issues in the learning and teaching of algebra. Virginia, VI: Lawrence Erlbaum &...
    • Warren, E. (2006). Teacher actions that assist young students write generalizations in words and in symbols. In J. Novotná, H. Moraová, M....
    • Wartofsky, M. (1979). Models, representation and the scientific understanding. Dordrecht, The Netherlands: D. Reidel.
    • You, H. (1994). Defining rhythm: aspects of an anthropology of rhythm. Culture, Medicine and Psychiatry, 18, 361-384.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno