Ir al contenido

Documat


Local Polynomial Regression Smoothers with AR-error Structure

  • Autores: Mario Francisco-Fernández Árbol académico, Juan Manuel Vilar Fernández Árbol académico
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 11, Nº. 2, 2002, págs. 439-464
  • Idioma: inglés
  • DOI: 10.1007/bf02595716
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Consider the fixed regression model with random observation error that follows an AR(1) correlation structure. In this paper, we study the nonparametric estimation of the regression function and its derivatives using a modified version of estimators obtained by weighted local polynomial fitting. The asymptotic properties of the proposed estimators are studied; expressions for the bias and the variance/covariance matrix of the estimators are obtained and the joint asymptotic normality is established. In a simulation study, a better behavior of the Mean Integrated Squared Error of the proposed regression estimator with respect to that of the classical local polynomial estimator is observed when the correlation of the observations is large.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno