Ir al contenido

Documat


Resumen de Training part-of-speech taggers to build machine translation systems for less-resourced language pairs

Felipe Sánchez Martínez Árbol académico, Carme Armentano i Oller, Juan Antonio Pérez Ortiz Árbol académico, Mikel L. Forcada Zubizarreta Árbol académico

  • español

    Este articulo revisa el empleo de un método no supervisado para la obtención de desambiguadores léxicos categoriales para su empleo dentro del ingenio de traducción automática (TA) de código abierto Apertium. El método emplea el resto de módulos del sistema de TA y un modelo de la lengua destino de la traducción para la obtención de desambiguadores léxicos categoriales que después se usan dentro de la plataforma de TA Apertium para traducir. Los experimentos realizados con el par de lenguas occitano-catalán (un caso de estudio para pares de lenguas minorizadas con pocos recursos) muestran que la cantidad de corpus necesario para el entrenamiento es reducida comparado con los tamaños de corpus habitualmente usados con otros métodos de entrenamiento no supervisado como el algoritmo de Baum y Welch. Esto hace que el método sea especialmente apropiado para la obtención de desambiguadores léxicos categoriales para su empleo en TA entre pares de lenguas minorizadas. Además, la calidad de traducción del sistema de TA que utiliza el desambiguador léxico categorial resultante es comparativamente mejor.

  • English

    In this paper we review an unsupervised method that can be used to train the hidden-Markov-model-based part-of-speech taggers used within the opensource shallow-transfer machine translation (MT) engine Apertium. This method uses the remaining modules of the MT engine and a target language model to obtain part-of-speech taggers that are then used within the Apertium MT engine in order to produce translations. The experimental results on the Occitan-Catalan language pair (a case study of a less-resourced language pair) show that the amount of corpora needed by this training method is small compared with the usual corpus sizes needed by the standard (unsupervised) Baum-Welch algorithm. This makes the method appropriate to train part-of-speech taggers to be used in MT for less-resourced language pairs. Moreover, the translation performance of the MT system embedding the resulting part-of-speech tagger is comparatively better.


Fundación Dialnet

Mi Documat