Ir al contenido

Documat


Tantrices de lazos en ${\mathbb R}^{3}$

  • Autores: Oscar Andrés Montaño Carreño
  • Localización: Lecturas matemáticas, ISSN-e 0120-1980, Vol. 26, Nº. 2, 2005, págs. 165-170
  • Idioma: español
  • Enlaces
  • Resumen
    • español

      Un lazo en ${\mathbb R}^{3}$ es una curva cerrada regular $\sigma$. La normalizaci\'on del vector velocidad $\tau=\dot{\sigma}/|\dot{\sigma}|$ se denomina tangente indicatriz o tantriz de $\sigma$. La tantriz de una curva cerrada en ${\mathbb R}^{3}$ es una curva cerrada en $S^{2}$, pero no siempre una curva cerrada en $S^{2}$ es la tantriz de una curva cerrada en ${\mathbb R}^{3}$. Se dar\'an condiciones necesarias y suficientes para que una curva cerrada $C\,'$ en $S^{2}$ sea la tantriz de un lazo en ${\mathbb R}^{3}$.

    • English

      A loop in ${\mathbb R}^3$ is a closed regular curve $\sigma$. The normalization of the velocity vector $\tau = \dot{\sigma}/|\dot{\sigma}|$ is called the tangent indicatrix or the tantrix of $\sigma$. The tantrix is a closed curve in $S^2$, but not all closed curves in $S^2$ are the tantrix of some closed curve in ${\mathbb R}^3$. In this paper sufficient and necessary conditions for a closed curve $C^\prime$ in $S^2$ to be the tantrix of some loop in ${\mathbb R}^3$ are given


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno