Ir al contenido

Documat


Elección de Operadores Lógicos para la Inducción de Conocimiento Comprensible

  • Autores: Cristóbal Romero Morales Árbol académico, Sebastián Ventura Soto Árbol académico, César Hervás Martínez Árbol académico, Pedro González Espejo
  • Localización: Inteligencia artificial: Revista Iberoamericana de Inteligencia Artificial, ISSN-e 1988-3064, ISSN 1137-3601, Vol. 10, Nº. 29, 2006 (Ejemplar dedicado a: Minería de Datos), págs. 19-30
  • Idioma: español
  • Enlaces
  • Resumen
    • In data mining, the quality of induced knowledge is determined by several features. The focus has been usually placed on accuracy, paying much less attention to comprehensibility. In this paper, we present a rule-based data mining system for classification. Our main goal is the analysis of the trade-off between accuracy and comprehensibility, but we approach comprehensibility from a novel point of view: we are interested in gaining insight into how the use of logical operators affects comprehensibility. In addition, we study the suitability of grammar-based genetic programming for data mining.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno