Ir al contenido

Documat


Gröbner bases and logarithmic -modules

  • Autores: José María Ucha Enríquez Árbol académico, Francisco Jesús Castro Jiménez Árbol académico
  • Localización: Journal of symbolic computation, ISSN 0747-7171, Vol. 41, Nº 3, 2006, págs. 317-335
  • Idioma: inglés
  • DOI: 10.1016/j.jsc.2004.04.011
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let be the ring of polynomials with complex coefficients and An the Weyl algebra of order n over . Elements in An are linear differential operators with polynomial coefficients. For each polynomial f, the ring of rational functions with poles along f has a natural structure of a left An-module which is finitely generated by a classical result of I.N. Bernstein. A central problem in this context is how to find a finite presentation of M starting from the input f. In this paper we use Gröbner base theory in the non-commutative frame of the ring An to compare M to some other An-modules arising in Singularity Theory as the so-called logarithmic An-modules. We also show how the analytic case can be treated with computations in the Weyl algebra if the input data f is a polynomial.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno