Ir al contenido

Documat


A proof of the weak (1,1) inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition

  • Autores: Xavier Tolsa Domènech Árbol académico
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 45, Nº 1, 2001, págs. 163-174
  • Idioma: inglés
  • DOI: 10.5565/publmat_45101_07
  • Títulos paralelos:
    • Prueba de la desigualdad (1,1) débil para integrales singulares con medidas no duplicantes basada en una descomposición de Calderón-Zygmund
  • Enlaces
  • Resumen
    • Given a doubling measure $\mu$ on ${\mathbb R}^d$, it is a classical result of harmonic analysis that Calderón-Zygmund operators which are bounded in $L^2(\mu)$ are also of weak type (1,1). Recently it has been shown that the same result holds if one substitutes the doubling condition on $\mu$ by a mild growth condition on $\mu$. In this paper another proof of this result is given. The proof is very close in spirit to the classical argument for doubling measures and it is based on a new Calderón-Zygmund decomposition adapted to the non doubling situation.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno