Ir al contenido

Documat


An approach to Schreier's space

  • Autores: Jesús María Fernández Castillo Árbol académico, Miguel González Velasco Árbol académico
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 6, Nº 2-3, 1991, págs. 166-169
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In 1930, J. Schreier [10] introduced the notion of admissibility in order to show that the now called weak-Banach-Saks property does not hold in every Banach space. A variation of this idea produced the Schreier's space (see [1],[2]). This is the space obtained by completion of the space of finite sequences with respect to the following norm:

      ||x||S = sup(A admissible) ?j Î A |xj|, where a finite sub-set of natural numbers A = {n1 < ... < nk} is said to be admissible if k = n1.

      In this extract we collect the basic properties of S, which can be considered mainly folklore, and show how this space can be used to provide counter examples to the three-space problem for several properties such as: Dunford-Pettis and Hereditary Dunford-Pettis, weak p-Banach-Saks, and Sp.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno