Ir al contenido

Documat


Group actions and irrationality in surface families

  • Nathan Chen [1] ; Louis Esser [2]
    1. [1] Harvard University

      Harvard University

      City of Cambridge, Estados Unidos

    2. [2] Princeton University

      Princeton University

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01097-8
  • Enlaces
  • Resumen
    • Rationality specializes in families of surfaces, even with mild singularities. In this paper, we study the analogous question for the degree of irrationality. We prove a specialization result when the degree of irrationality on the generic fiber arises from the quotient by a group action

  • Referencias bibliográficas
    • 1. Barth, W.: Abelian surfaces with (1, 2)-polarization, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland,...
    • 2. Chen, N.: Degree of irrationality of very general abelian surfaces. Algebra Number Theory 13(9), 2191–2198 (2019)
    • 3. Chen, N., Ji, L., Stapleton, D.: Fano hypersurfaces with no finite order birational automorphisms, to appear in Amer. J. Math. (2022)
    • 4. Chen, N., Martin, O.: Rational maps from products of curves to surfaces with pg = q = 0. Math. Z. 304(4), 62 (2023)
    • 5. Chen, N., Stapleton, D.: Fano hypersurfaces with arbitrarily large degrees of irrationality. Forum Math. Sigma 8, e24 (2020)
    • 6. Chen, N., Stapleton, D.: Rational endomorphisms of Fano hypersurfaces. Selecta Math. (N.S.) 30(1), 16 (2024)
    • 7. Elkik, R.: Singularités rationnelles et déformations. Invent. Math. 47(2), 139–147 (1978)
    • 8. Hartshorne, R.: Algebraic geometry, Graduate Texts in Mathematics, vol. 52. Springer-Verlag, New York-Heidelberg (1977)
    • 9. Hacon, C.D., McKernan, J.: On Shokurov’s rational connectedness conjecture. Duke Math. J. 138(1), 119–136 (2007)
    • 10. Kleiman, S.L.: The Picard scheme, Alexandre Grothendieck: a mathematical portrait, Int. Press, Somerville, MA, pp. 35–74 (2014)
    • 11. Kollár, J., Mori, S.: Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, With the collaboration of...
    • 12. Kollár, J.: Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys...
    • 13. Kollár, J.: Families of varieties of general type, Cambridge Tracts in Mathematics, vol. 231, With the collaboration of Klaus Altmann...
    • 14. Kraft, H.: G-vector bundles and the linearization problem, Group actions and invariant theory (Montreal, PQ, 1988), CMS Conf. Proc., vol....
    • 15. Kraft, H.: Regularization of rational group actions, arXiv preprint arXiv:1808.08729 (2018)
    • 16. Kollár, J., Shepherd-Barron, N.I.: Threefolds and deformations of surface singularities. Invent. Math. 91(2), 299–338 (1988)
    • 17. Kontsevich, M., Tschinkel, Y.: Specialization of birational types. Invent. Math. 217(2), 415–432 (2019)
    • 18. Lee, Y., Park, J.: A simply connected surface of general type with pg = 0 and K2 = 2. Invent. Math. 170(3), 483–505 (2007)
    • 19. Martin, O.: The degree of irrationality of most abelian surfaces is 4. Ann. Sci. Éc. Norm. Supér. (4) 55(2), 569–574 (2022)
    • 20. Moh, T.T., Heinzer, W.: On the Lüroth semigroup and Weierstrass canonical divisors. J. Algebra 77(1), 62–73 (1982)
    • 21. Park, H., Park, J., Shin, D.: A simply connected surface of general type with pg = 0 and K2 = 3. Geom. Topol. 13(2), 743–767 (2009)
    • 22. Park, H., Park, J., Shin, D.: A simply connected surface of general type with pg = 0 and K2 = 4. Geom. Topol. 13(3), 1483–1494...
    • 23. Siu, Y.-T.: Invariance of plurigenera. Invent. Math. 134(3), 661–673 (1998)
    • 24. Totaro, B.: Rationality does not specialise among terminal varieties. Math. Proc. Cambridge Philos. Soc. 161(1), 13–15 (2016)
    • 25. Vial, C.: Algebraic cycles and fibrations. Doc. Math. 18, 1521–1553 (2013)
    • 26. Yoshihara, H.: Degree of irrationality of a product of two elliptic curves. Proc. Amer. Math. Soc. 124(5), 1371–1375 (1996)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno