Ir al contenido

Documat


Rational endomorphisms of Fano hypersurfaces

  • Nathan Chen [1] ; David Stapleton [2]
    1. [1] Stony Brook University

      Stony Brook University

      Town of Brookhaven, Estados Unidos

    2. [2] Department of Mathematics, University of California San Diego,USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 1, 2024, 24 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00897-0
  • Enlaces
  • Resumen
    • We show that the degrees of rational endomorphisms of very general complex Fano and Calabi–Yau hypersurfaces satisfy certain congruence conditions by specializing to characteristic p. As a corollary we show that very general n-dimensional hypersurfaces of degree d ≥ 5(n +3)/6 are not birational to Jacobian fibrations of dimension one. A key part of the argument is to resolve singularities of general μp-covers in mixed characteristic p.

  • Referencias bibliográficas
    • Abhyankar, S.: On the valuations centered in a local domain. Am. J. Math. 78, 321–348 (1956)
    • Beheshti, R., Riedl, E.: Linear subspaces of hypersurfaces. Duke Math. J. 170, 2263–2288 (2021)
    • Chatzistamatiou, A., Levine, M.: Torsion orders of complete intersections. Algebra Number Theory 11, 1779–1835 (2017)
    • Cheltsov, I.A.: Log pairs on hypersurfaces of degree N in PN. Mat. Zametki 68, 131–138 (2000)
    • Chen, N., Church, B., Ji, L., Stapleton, D.: The fibering genus of Fano hypersurfaces, arXiv preprint arXiv:2308.12401 (2023)
    • Chen, N., Ji, L., Stapleton, D.: Fano hypersurfaces with no finite order birational automorphisms, arXiv preprint (2022). arXiv:2208.07396
    • Chen, N., Stapleton, D.: Fano hypersurfaces with arbitrarily large degrees of irrationality. In: Forum of Mathematics, Sigma, vol. 8, p. e.24...
    • Dedieu, T.: Severi varieties and self-rational maps of K3 surfaces. Int. J. Math. 20, 1455–1477 (2009)
    • Grassi, A.: On minimal models of elliptic threefolds. Math. Ann. 290, 287–302 (1991)
    • Grassi, A., Wen, D.: Higher dimensional elliptic fibrations and Zariski decompositions arXiv:1904.02779 (2019)
    • Hartl, U.T.: Semi-stability and base change. Arch. Math. (Basel) 77, 215–221 (2001)
    • Kobayashi, S., Ochiai, T.: Meromorphic mappings onto compact complex spaces of general type. Invent. Math. 31, 7–16 (1975)
    • Kollár, J.: Nonrational hypersurfaces. J. Am. Math. Soc. 8, 241–249 (1995)
    • Kollár, J.: Rational Curves on Algebraic Varieties, vol. 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1996)
    • Kollár, J.: The rigidity theorem of Fano–Segre–Iskovskikh–Manin–Pukhlikov–Corti–Cheltsov–de Fernex–Ein–Musta¸t˘a–Zhuang, in Birational Geometry...
    • Lazarsfeld, R.: Positivity in Algebraic Geometry I: Classical Setting: Line Bundles and Linear Series, vol. 48. Springer, New York (2004)
    • Mori, S.: On a generalization of complete intersections. J. Math. Kyoto Univ. 15, 619–646 (1975)
    • Pukhlikov, A.V.: K-trivial structures on Fano complete intersections. Math. Notes, 91, 568–574 (2012). Translation of Mat. Zametki 91(4),...
    • Schreieder, S.: Stably irrational hypersurfaces of small slopes. J. Am. Math. Soc. 32, 1171–1199 (2019)
    • Schreieder, S.: Torsion orders of Fano hypersurfaces. Algebra Number Theory 15, 241–270 (2021)
    • Totaro, B.: Hypersurfaces that are not stably rational. J. Am. Math. Soc. 29, 883–891 (2016)
    • Vial, C.: Algebraic cycles and fibrations. Doc. Math. 18, 1521–1553 (2013)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno