Ir al contenido

Documat


Adding diversity to mathematical connections to counter Klein’s second discontinuity

    1. [1] Columbia University

      Columbia University

      Estados Unidos

  • Localización: Recherches en Didactique des Mathématiques, ISSN 0246-9367, Vol. 45, Nº 1, 2025, págs. 5-34
  • Idioma: inglés
  • Títulos paralelos:
    • Agregar diversidad a las conexiones matemáticas para contrarrestar la segunda discontinuidad de Klein
    • Ajouter de la diversité aux connexions mathématiques pour contrer la seconde discontinuité de Klein
  • Enlaces
  • Resumen
    • español

      Para los profesores que intentan que los cursos de matemáticas universitarias sean relevantes para los futuros profesores de secundaria, hacerlo generalmente implica establecer conexiones entre el contenido de matemáticas universitarias y el contenido de matemáticas escolares–en un intento de contrarrestar lo que Felix Klein denominó una “doble discontinuidad.” En este artículo, considero la naturaleza de las conexiones matemáticas que unen estos dos dominios y las distinciones comunes que se hacen en la literatura existente entre ellos, como la direccionalidad. A través de este análisis, señalo otro aspecto de estas conexiones que se ha dejado implícito: las matemáticas universitarias se enmarcan principalmente (y razonablemente) como un superconjunto del contenido de matemáticas escolares. En este artículo considero alternativas, en particular la espiritualización de conexiones que invierten esta conexión relacional típica–es decir, una conexión relacional de subconjunto–y ejemplifico estas conexiones con conceptos de cursos universitarios como análisis real y álgebra abstracta. Luego, considero la lógica para hacerlo en términos de la formación de profesores de secundaria y las formas en que diversificar nuestro marco de conexiones de esta manera puede usarse para ayudar a contrarrestar la segunda discontinuidad de Klein.

    • English

      For instructors that try to make university mathematics courses relevant to future secondary school teachers, doing so generally involves making connections between university mathematics content and school mathematics content–in attempts to counter what Felix Klein referred to as a “double discontinuity.” In this paper, I consider the nature of the mathematical connections that bridge these two domains, and common distinctions made in extant literature between them, such as directionality. Through this analysis, I point out another aspect of these connections that has been left implicit: university mathematics is primarily–and reasonably–framed as a superset of school mathematics content. In this paper I consider alternatives, in particular conceptualizing connections that invert this typical relational connection–i.e., a subset relational connection–and I exemplify these connections with concepts from university courses such as real analysis and abstract algebra. Then, I consider the rationale for doing so in terms of secondary teacher education, and the ways that diversifying our framework of connections in this way can be used to help counter Klein’s second discontinuity.

    • français

      Pour les enseignants qui tentent de rendre les cours de mathématiques universitaires pertinents pour les futurs enseignants du secondaire, cela implique généralement d’établir des liens entre le contenu des mathématiques universitaires et celui des mathématiques scolaires, dans une ten-tative de contrer ce que Felix Klein appelle une « double discontinuité ». Dans cet article, j’exa-mine la nature des connexions mathématiques qui relient ces deux domaines et les distinctions courantes faites entre eux dans la littérature existante, telle que la « directionality ». À travers cette analyse, je pointe un autre aspect de ces connexions mathématiques qui est resté impli-cite : les mathématiques universitaires sont principalement – et raisonnablement – présentées comme un sur-ensemble du contenu des mathématiques scolaires. Dans cet article, j’envisage des alternatives, en particulier la conceptualisation de connexions mathématiques qui inversent cette connexion relationnelle typique – c’est-à-dire une connexion relationnelle de sous-ensemble – et j’illustre ces connexions avec des concepts issus de cours universitaires tels que l’analyse réelle et l’algèbre abstraite. J’examine ensuite la justification de cette démarche en termes de formation des enseignants du secondaire et les façons dont la diversification de notre cadre de connexions mathématiques peut ainsi être utilisée pour aider à contrer la seconde discontinuité de Klein.

  • Referencias bibliográficas
    • ÁLVAREZ, J. A. M., ARNOLD, E. G., BURROUGHS, E. W., & KERCHER, A. (2020). The design of tasks that address connections to teaching secondary...
    • BALL, D. L., & FORZANI, F. M. (2009). The work of teaching and the challenge of teacher education. Journal of Teacher Education, 60(5), 497-511....
    • BRUNER , J. S. (1960). The process of education. Harvard University Press.
    • CHEVALLARD , Y., & BOSCH, M. (2020). Anthropological Theory of the Didactic (ATD). In S. Lerman (Ed.), Encyclopedia of mathematics education...
    • CHO , H., & KWON , O. (2017). Understanding future teachers’ mathematical knowing to overcome double discontinuities. In B. Kaur and N....
    • COMMON CORE STATE STANDARDS FOR M ATHEMATICS (CCSSM). (2010). Mathematics standards. http://www.thecorestandards.org/wp- content/uploads/Math_Standards1.pdf
    • CONFERENCE BOARD OF THE M ATHEMATICAL S CIENCES (CBMS) (2012). The mathematical education of teachers II (MET II). http://www.cbmsweb.org/MET2/MET2Draft.pdf
    • COURANT, R., & ROBBINS, H. (1996). What is mathematics? An elementary approach to ideas and methods (2nd ed.). Oxford University Press.
    • DAVIS, G., ELLIS , D., HOPE, J., ROLHEISER , D., S UFRIN , D., VAN BERGEYK, C., VAN BERGEYK, D., & ZIMMER , D. (2010). Foundations and...
    • DEROUET, C., PLANCHON , G., HAUSBERGER , T., & HOCHMUTH, R. (2018). Bridging probability and calculus: The case of continuous distributions and...
    • DIMARTINO , P., GREGORIO , F., & IANNONE, P. (E DS.). (2023). Transition from school into university mathematics: Experiences across educational contexts....
    • DREHER , A., LINDMEIER , A., HEINZE, A. ET AL. (2018). What Kind of Content Knowledge do Secondary Mathematics Teachers Need?, Journal für...
    • DREYFUS , T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.) Advanced mathematical thinking (pp. 25-41). Kluwer.
    • GOULDING , M., HATCH, G., & RODD , M. (2003). Undergraduate mathematics experience: Its significance in secondary mathematics teacher...
    • GUEUDET, G., BOSCH, M., DISESSA, A. A., KWON , O. N. & VERSCHAFFEL , L. (2016). Transitions in Mathematics Education. Springer. https://doi.org/10.1007/978-3-319-31622-2
    • HEID , M.K., WILSON , P.S. & BLUME, G. (Eds.). (2015). Mathematical Understanding for Secondary Teaching: A Framework and Classroom- based...
    • HOHENSEE, C. (2014). Backward transfer: An investigation of the influence of quadratic functions instruction on students‘ prior ways of reasoning...
    • HOTH, J., JESCHKE, C., DREHER , A. ET AL. (2020). Ist akademisches Fachwissen hinreichend für den Erwerb eines berufsspezifischen Fachwissens...
    • HOWSON , G., KEITEL, C., & KILPATRICK, J. (1981). Curriculum development in mathematics. Cambridge University Press.
    • INGVARSON , L., CHWILLE , J., TATTO , M. T., ROWLEY , G., P ECK, R., & S ENK, S. L. (2013). An analysis of teacher education context,...
    • KLEIN , F. (1932/2016). Elementary mathematics from a higher standpoint: Volume I: Arithmetic, algebra, analysis. Springer.
    • LISCHKA, A. E., LAI, Y., STRAYER , J. F., & ANHALT, C. (2020). Developing mathematical knowledge in and for teaching in content courses....
    • MINISTRY OF EDUCATION , SINGAPORE (MOE). (2020). Mathematics syllabus: Primary one to six. Author. https://www.moe.gov.sg/- /media/files/syllabus/2021-pri-mathematics-1-to-3.pdf
    • MOSQUERA, J. C. (1992). Advanced mathematics from an elementary standpoint. The Mathematics Educator, 3(1), 11-15.
    • NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS (NCTM). (2000). Principles and standards for school mathematics. Author.
    • NATIONAL RESEARCH COUNCIL (NRC). (2001). Adding it up: Helping children learn mathematics. J. Kilpatrick, J. Swafford, & B. Findell (Eds.)....
    • OUVRIER -BUFFET, C. (2015). A model of mathematicians’ approach to the defining processes. Ninth Congress of the European Society for Research...
    • PIAGET, J. (1952). The origins of intelligence in children. New York, NY: International University Press.
    • PLANCHON , G. (2019). Relations between academic knowledge and knowledge taught in secondary education: Klein’s second discontinuity in the...
    • SKEMP, R. R. (1979). Intelligence, learning and action: A foundation for theory and practice in education. Wiley.
    • SPIEGEL, M. R. (1950). Advanced mathematics from an elementary standpoint. Mathematics Magazine, 23(5), 244-246.
    • STYLIANIDES, A. J., & STYLIANIDES , G. J. (2014). Viewing “mathematics for teaching” as a form of applied mathematics: Implications for...
    • TALL, D. (Ed.). (1991). Advanced mathematical thinking. Kluwer. https://doi.org/10.1007/0-306-47203-1
    • TICKNOR , C. S. (2012). Situated learning in an abstract algebra classroom. Educational Studies in Mathematics, 81(3), 307–323. https://doi.org/10.1007/s10649-012-9405-y
    • WASSERMAN , N. (2018). Knowledge of nonlocal mathematics for teaching. Journal of Mathematical Behavior, 49, 116-128. https://doi.org/10.1016/j.jmathb.2017.11.003
    • WASSERMAN , N. (2023). Mathematical challenge in connecting advanced and secondary mathematics: Recognizing binary operations as functions. In...
    • WASSERMAN , N., BUCHBINDER , O., & BUCHHOLTZ, N. (2023). Making university mathematics matter for secondary teacher preparation. ZDM – Mathematics...
    • WASSERMAN , N., & GALARZA, P. (2018). Exploring an instructional model for designing modules for secondary mathematics teachers in an abstract...
    • WASSERMAN , N., & MC GUFFEY , W. (2021). Opportunities to learn from (advanced) mathematical coursework: A teacher perspective on observed classroom...
    • WASSERMAN , N., & WEBER , K. (2017). Pedagogical applications from real analysis for secondary mathematics teachers. For the Learning...
    • WASSERMAN , N., WEBER , K., FUKAWA-CONNELLY , T., & MC GUFFEY , W. (2019). Designing advanced mathematics courses to influence secondary teaching:...
    • WASSERMAN , N., WEBER , K., FUKAWA-CONNELLY , T., & MEJIA-RAMOS, J. P. (2020). Area-preserving transformations: Cavalieri in 2D. Mathematics...
    • WASSERMAN , N., WEBER , K., & MC GUFFEY , W. (2017). Leveraging real analysis to foster pedagogical practices. In A. Weinberg, C. Rasmussen, J....
    • WASSERMAN , N., WEBER , K., VILLANUEVA, M., & MEJIA-RAMOS , J. P. (2018). Mathematics teachers’ views about the limited utility of real analysis:...
    • WEIGAND , H. G., MC CALLUM , W., MENGHINI , M., NEUBRAND , M., & SCHUBRING , G. (Eds.). (2019). The Legacy of Felix Klein. ICME-13 Monographs....
    • WINKELMANN , B. (1994). Preparing mathematics for students. In R. Biehler, R. W. Scholz, R. Sträßer, and B. Winkelmann (Eds.), Didactics of...
    • WINSLØW , C. & GRØNBÆK, N. (2014). Klein’s double discontinuity revisited: contemporary challenges for universities preparing teachers...
    • ZAZKIS, R., & LEIKIN , R. (2010). Advanced mathematical knowledge in teaching practice: Perceptions of secondary mathematics teachers. Mathematical...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno