Ir al contenido

Documat


On the Chebyshev Property of Degenerate Complete Hyperelliptic Integrals of the First Kind

  • Shaoqing Wang [1] ; Yangjian Sun [2] ; Guilin Ji [3]
    1. [1] Central China Normal University

      Central China Normal University

      China

    2. [2] Shangrao Normal University

      Shangrao Normal University

      China

    3. [3] Guangxi Normal University

      Guangxi Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper is devoted to the upper bound for the number of zeros of some classes of complete hyperelliptic integrals of the first kind. By some Chebyshev criterion of Abelian integrals, we obtain necessary and sufficient conditions for the integrals in degenerate cases to satisfy the Chebyshev property, which promotes the relevant work of research, including the work by Gavrilov and Iliev (2003), the one by N. Wang, J.

      Wang and D. Xiao (2013), as well as the one by C. Liu, Y. Sun and D. Xiao (2024).

  • Referencias bibliográficas
    • 1. An, T., Dai, Y., Hu, Z.: The Chebyshev property of three classes of complete hyperelliptic integrals of the first kind, preprint
    • 2. Arnold, V.I.: Ten problems, in: Theory of singularities and its applications, Adv. Soviet Math. 1, pp. 1-8, Amer. Math. Soc., Providence,...
    • 3. Binyamini, G., Novikov, D., Yakovenko, S.: On the number of zeros of Abelian integrals. Invent. Math. 181, 227–289 (2010)
    • 4. Coppel, W.A., Gavrilov, L.: The period function of a Hamiltonian quadratic system. Differ. Integral Equ. 6(6), 1357–1365 (1993)
    • 5. Dumortier, F., Li, C.: Perturbations from an elliptic Hamiltonian of degree four I, Saddle loop and two saddle cycle. J. Differential Equations...
    • 6. Givental, A.B.: Sturm’s theorem for hyperelliptic integrals. Leningrad Math. J. 1, 1157–1163 (1990)
    • 7. Gavrilov, L.: Petrov modules and zeros of abelian integrals. Bull. Sci. Math. 122, 571–584 (1998)
    • 8. Gavrilov, L., Iliev, I.D.: Two-dimensional Fuchsian systems and the Chebyshev property. J. Differential Equations 191, 105–120 (2003)
    • 9. Gavrilov, L., Iliev, I.D.: Completle hyperelliptic integrals of the first kind and their nonoscilliation. Trans. Amer. Math. Soc. 356,...
    • 10. Grau, M., Mañosas, F., Villadelpart, J.: A Chebychev criterion for Abelian integral. Trans. Amer. Math. Soc. 363, 109–129 (2011)
    • 11. Li, C., Zhang, Z.: A criterion for determining the monotonocity of the ratio of two Abelian integrals. J. Differential Equations 124,...
    • 12. Liu, C., Chen, G., Sun, Z.: New criteria for the monotonicity of the ratio of two Abelian integrals. J. Math. Anal. Appl. 465, 220–234...
    • 13. Liu, C., Xiao, D.: The monotonicity of the ratio of two Abelian integrals. Tran. Amer. Math Soc. 365, 5525–5544 (2013)
    • 14. Liu, C., Xiao, D.: The smallest upper bound on the number of zeros of Abelian integrals. J. Differential Equations 269(4), 3816–3852 (2020)
    • 15. Sun, Y., Liu, C.: The Poincaré Bifurcation of a SD oscillator. Discrete Contin. Dyn. Syst. B. 26(3), 1565–1577 (2021)
    • 16. Liu, C., Sun, Y., Xiao, D.: The Chebyshev Property of Some Complete Hyper-elliptic Integrals of the First Kind. Comput. Appl. Math. 43,...
    • 17. Wang, N., Wang, J., Xiao, D.: The exact bounds on the number of zeros of complete hyperelliptic integrals of the first kind. J. Differential...
    • 18. Zhao, Y., Zhang, Z.: Linear estimate of the number of zeros of abelian integrals for a kind of quartic hamiltonians. J. Differential Equations...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno