Ir al contenido

Documat


The Chebyshev Property of Three Classes of Complete Hyperelliptic Integrals of the First Kind

  • Tianrui An [1] ; Yanfei Dai [1] ; Zhiming Hu [2]
    1. [1] Zhejiang Normal University

      Zhejiang Normal University

      China

    2. [2] Shanghai University of Finance and Economics

      Shanghai University of Finance and Economics

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 4, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper investigates the Chebyshev property of three classes of complete hyperelliptic integrals of the first kind. Using recent advancements in the criterion function and employing some techniques and methods from symbolic computation, we prove that the three classes of complete hyperelliptic integrals are Chebyshev, and the exact bounds on the number of zeros of these Abelian integrals are one. Our results complement and enrich the existing results, and show that there exist other subfamilies of ovals of the hyperelliptic Hamiltonian which are not exceptional, but the corresponding complete hyperelliptic integrals of the first kind still satisfy the Chebyshev property.

  • Referencias bibliográficas
    • 1. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1988)
    • 2. Hilbert, D.: Mathematische probleme, pp. 403–479. Springer-Verlag, Berlin, Gesammelte Abhandlungen III (1935)
    • 3. Arnold, V.I.: Some unsolved problems in the theory of differential equations and mathematical physics. Russian Math. Surveys 44(4), 157–171...
    • 4. Arnold, V.I.: Ten problems, in: Theory of singularities and its applications, Adv. Soviet Math. 1 1–8 (1990)
    • 5. Arnold, V.I.: Sur quelques probl mes de la th orie des syst mes dynamiques. Topol. Methods Nonlinear Anal. 4, 209–225 (1994)
    • 6. Novikov, D., Yakovenko, S.: Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems, Electron. Res. Announc....
    • 7. Petrov, G.S.: Number of zeros of complete elliptic integrals. Funct. Anal. Appl. 18, 72–73 (1984)
    • 8. Petrov, G.S.: Funct. Anal. Appl. 20, 37–40 (1986)
    • 9. Petrov, G.S.: Funct. Anal. Appl. 21, 87–88 (1987)
    • 10. Petrov, G.S.: Funct. Anal. Appl. 22, 37–40 (1988)
    • 11. Petrov, G.S.: Funct. Anal. Appl. 23, 88–89 (1989)
    • 12. Petrov, G.S.: Funct. Anal. Appl. 24, 45–50 (1990)
    • 13. Petrov, G.S.: The Chebyshev property of elliptic integrals. Funct. Anal. Appl. 22, 72–73 (1988)
    • 14. Petrov, G.S.: Non-oscillation of elliptic integrals. Funct. Anal. Appl. 24, 205–210 (1990)
    • 15. Horozov, E., Iliev, I.: Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians. Nonlinearity 11, 1521–1537...
    • 16. Gavrilov, L.: Nonoscillation of elliptic integrals related to cubic polynomials with symmetry of order three. Bull. London Math. Soc....
    • 17. Gavrilov, L.: Abelian integrals related to Morse polynomials and perturbations of plane Hamiltonian vector fields. Ann. Inst. Fourier...
    • 18. Gasull, A., Li, W., Llibre, J., Zhang, Z.: Chebyshev property of complete elliptic integrals and its application to Abelian integrals....
    • 19. Yuan, Z., Ke, A., Han, M.: On the number of limit cycles of a class of Liénard-Rayleigh oscillators. Phys. D 438, 133366 (2022)
    • 20. Dumortier, F., Li, C.: Perturbations from an elliptic Hamiltonian of degree four (I): Saddle loop and two saddle cycle. J. Differential...
    • 21. Dumortier, F., Li, C.: Perturbations from an elliptic Hamiltonian of degree four (II): Cuspidal loop. J. Differential Equations 175, 209–243...
    • 22. Dumortier, F., Li, C.: Perturbations from an elliptic Hamiltonian of degree four (III): Global centre. J. Differential Equations 188,...
    • 23. Dumortier, F., Li, C.: Perturbations from an elliptic Hamiltonian of degree four (IV): Figure eight-loop. J. Differential Equations 188,...
    • 24. Wang, J., Xiao, D.: On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems with one nilpotent...
    • 25. Li, C.: Abelian integrals and limit cycles. Qual. Theory Dyn. Syst. 11, 111–128 (2012)
    • 26. Sun, Y., Wang, S., Yang, J.: On the Chebyshev property of a class of hyperelliptic Abelian integrals. Qual. Theor. Dyn. Syst. 23, 275...
    • 27. Sun, Y., Ji, G., Wang, S.: The cyclicity of a class of quadratic reversible systems with hyperelliptic curves. Bull. Sci. Math. 193, 103420...
    • 28. Sun, Y., Dai Y.: The lowest upper bound on the number of zeros of a class of hyperelliptic Abelian integrals. Sci. China Math. 68(6),...
    • 29. Givental, A.B.: Sturm’s theorem for hyperelliptic integrals. Leningrad Math. J. 1, 1157–1163 (1990)
    • 30. Gavrilov, L., Iliev, I.D.: Completle hyperelliptic integrals of the first kind and their nonoscilliation. Trans. Amer. Math. Soc. 356(3),...
    • 31. Wang, N., Wang, J., Xiao, D.: The exact bounds on the number of zeros of complete hyperelliptic integrals of the first kind. J. Differential...
    • 32. Liu, C., Sun, Y., Xiao, D.: The Chebyshev property of some complete hyperelliptic integrals of the first Kind. Comput. Appl. Math. 43,...
    • 33. Dai, Y., Wei, M.: Existence and uniqueness of periodic waves for a perturbed sextic generalized BBM equation. J. Appl. Anal. Comput. 13(1),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno