Ir al contenido

Documat


Center and Degenerate Hopf Bifurcation Cyclicity of high-order Singularity in a Class of Three-Dimensional Systems

  • Jingping Lu [1] ; Jie Yao [1] ; Qinlong Wang [1]
    1. [1] Guilin University of Electronic Technology

      Guilin University of Electronic Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This study investigates the degenerate Hopf bifurcation occurring at a high-order degenerate singular point in a class of three-dimensional systems. Using the center manifold theorem, we propose a novel complex symmetric formal series method that allows direct computation of singular point quantities without reducing the original three-dimensional system to a two-dimensional form. Additionally, two specific classes of differential systems are analyzed, leading to a complete resolution of the center problem and the determination of the cyclicity of degenerate Hopf bifurcation for high-order singularities. This work offers new insights into the Hopf bifurcation associated with degenerate singular points.

  • Referencias bibliográficas
    • 1. Zhang, Z., Ding, T., Huang,W., Dong, Z.: Qualitative Theory of Differential Equations, English Science Press, Beijing (1992)
    • 2. Liu, Y., Li, J.: Theory of values of singular point in complex autonomous differential system. Sci. China Ser. A 33, 10–24 (1990)
    • 3. Gasull, A., Guillamon, A., Mañosa, V.: An explicit expression of the first liapunov and period constants with applications. J. Math. Anal....
    • 4. Chen, H., Liu, Y.: Linear recursion formulas of quantities of singular point and application. Appl. Math. Comput. 148, 163–171 (2004)
    • 5. Giné, J., Santallusia, X.: Implementation of a new algorithm of computation of the poincaré-liapunov constants. J. Comput. Appl. Math....
    • 6. Andreev, A.: Investigation of the behaviour of the integral curves of a system of two differential equations in the neighbourhood of a...
    • 7. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Qualitative Theory of Second Order Dynamic Systems. Wiley, New York (1973)
    • 8. Chavarriga, J., Giacomin, J., Giné, J., Llibre, J.: Local analytic integrability for nilpotent centers. Ergod. Theory Dyn. Syst. 23, 417–428...
    • 9. Liu, Y., Li, J.: On third-order nilpotent critical points: integral factor method. Int. J. Bifur. Chaos 21, 1293–1309 (2011)
    • 10. Álvarez, M., Gasull, A.: Monodromy and stability for nilpotent critical points. Int. J. Bifur. Chaos 15, 1253–1265 (2005)
    • 11. García, I.A., Giné, J.: The poincaré map of degenerate monodromic singularities with puiseux inverse integrating factor. Adv. Nonlinear...
    • 12. García, I.A., Giné, J.: Characterization of centers by their complex separatrices. J. Differ. Equ. 442, 113506 (2025)
    • 13. Moussu, R.: Symétrie et forme normale des centres et foyers dégénérés. Ergod. Theory Dyn. Syst. 2(2), 241–251 (1982)
    • 14. Álvarez, M.J., Gasull, A.: Generating limit cycles from a nilpotent critical point via normal forms. J. Math. Anal. Appl. 318(1), 271–287...
    • 15. Giné, J.: Stability condition for nilpotent singularities by its complex separatrices. Math. Methods Appl. Sci. 47(17), 13485–13491 (2024)
    • 16. Giné, J.: Center conditions for nilpotent singularities in the plane using invariant solutions. Qual. Theory Dyn. Syst. 23(5), 248 (2024)
    • 17. García, I.A., Maza, S.: A new approach to center conditions for simple analytic monodromic singularities. J. Differ. Equ. 248, 363–380...
    • 18. Giné, J., Llibre, J.: A method for characterizing nilpotent centers. J. Math. Anal. Appl. 413, 537–545 (2014)
    • 19. García, I.A., Giacomini, H., Giné, J., Llibre, J.: Analytic nilpotent centers as limits of nondegenerate centers revisited. J. Math. Anal....
    • 20. Li, F., Liu, Y., Liu, Y., Yu, P.: Bi-center problem and bifurcation of limit cycles from nilpotent singular points in equivariant cubic...
    • 21. Li, F., Chen, T., Liu, Y., Yu, P.: A complete classification on the center-focus problem of a generalized cubic kukles system with a nilpotent...
    • 22. Gasull, A., Llibre, J., Mañosa, V., Mañosas, F.: The focus-centre problem for a type of degenerate system. Nonlinearity 13, 699–729 (2000)
    • 23. Mañosa, V.: On the center problem for degenerate singular points of planar vector fields. Int. J. Bifur. Chaos 12, 687–707 (2002)
    • 24. Giné, J.: Sufficient conditions for a center at a completely degenerate critical point. Int. J. Bifur. Chaos 12, 1659–1666 (2002)
    • 25. Algaba, A., Freire, E., Gamero, E., García, C.: Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems....
    • 26. García, I.A., Giné, J.: The linear term of the poincaré map at singularities of planar vector fields. J. Differ. Equ. 396, 44–67 (2024)
    • 27. Jager, P.D.: An example of a quadratic system with a bounded separatrix cycle having at least two limit cycles in its interior. Delft....
    • 28. Buicˇa, A., Giné, J., Llibre, J.: Bifurcation of limit cycles from a polynomial degenerate center. Adv. Nonlinear Stud. 10(3), 597–609...
    • 29. Llibre, J., Pantazi, C.: Limit cycles bifurcating from a degenerate center. Math. Comput. Simul. 120, 1–11 (2016)
    • 30. Liu, Y.: Theory of center-focus for a class of higher-degree critical points and infinite points. Sci. China, Ser. A Math. 44, 37–48 (2001)
    • 31. Chen, H., Liu, Y., Zeng, X.: Center conditions and bifurcation of limit cycles at degenerate singular points in a quintic polynomial differential...
    • 32. Wu, Y., Zhang, C.: Bifurcation of limit cycles and pseudo-isochronicity at degenerate singular point in a septic system. Results. Math....
    • 33. Wang, Q., Huang, W., Feng, J.: Multiple limit cycles and centers on center manifolds for lorenz system. Appl. Math. Comput. 238, 281–288...
    • 34. Guo, L., Yu, P., Chen, Y.: Twelve limit cycles in 3d quadratic vector fields with Z3-symmetry. Int. J. Bifurc. Chaos. 28, 1850139 (2018)
    • 35. Huang, W., Wang, Q., Chen, A.: Hopf bifurcation and the centers on center manifold for a class of three-dimensional circuit system. Math....
    • 36. Lu, J., Wang, C., Huang, W., Wang, Q.: Local bifurcation and center problem for a more generalized lorenz system. Qual. Theory Dyn. Syst....
    • 37. Yu, P., Han, M.: Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation. Appl. Math....
    • 38. Romanovski, V.G., Shafer, D.S.: Centers and limit cycles in polynomial systems of ordinary differential equations. Adv. Stud. Pure Math....
    • 39. Wang, Q., Liu, Y., Chen, H.: Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems. Bull. Sci. Math. 134, 786–798...
    • 40. García, I.A.,Maza, S., Shafer, D.S.: Cyclicity of polynomial nondegenerate centers on center manifolds. J. Differ. Equ. 265, 5767–5808...
    • 41. Wang, Q., Huang, W., Liu, Y.: Multiple limit cycles bifurcation from the degenerate singularity for a class of three-dimensional systems....
    • 42. Pessoa, C., Queiroz, L.: Nilpotent centers from analytical systems on center manifolds. J. Math. Anal. Appl. 525, 127120 (2023)
    • 43. García, I.A.: Integrable zero-hopf singularities and three-dimensional centres. Proc. R. Soc. Edinb. A. 148, 327–340 (2018)
    • 44. Llibre, J., Ammar, K.: Zero-hopf periodic orbits for a rössler differential system. Int. J. Bifur. Chaos. 12, 2050170 (2020)
    • 45. Zeng, B., Yu, P.: Analysis of zero-hopf bifurcation in two rössler systems using normal form theory. Int. J. Bifur. Chaos. 16, 2030050...
    • 46. Wang, Q., Sang, B., Huang, W.: Mutiple Hopf Bifurcation on Center Manifold. In: Manifolds – Current Research Areas, pp. 1-20. InTech (2017)....
    • 47. Carr, J.: Applications of Centre Manifold Theory. Springer, New York (1981)
    • 48. Nemytskii, V.V., Stepanov, V.V.: Qualitative Theory of Differential Equations. Dover, New York (1989)
    • 49. Giné, J.: On the first integrals in the center problem. Bull. Sci. Math. 137(4), 457–465 (2013)
    • 50. Mattei, J.F., Moussu, R.: Holonomie et intégrales premières. Annales scientifiques de l’École normale supérieure 13(4), 469–523 (1980)
    • 51. Romanovski, V., Shafer, D.: The center and cyclicity problems: a computational algebra approach. Springer Science & Business Media...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno