Ir al contenido

Documat


Asymptotic stability of mild solutions for elastic systems with distributed delay and nonlocal initial conditions

  • Haide Gou [1] ; Yongxiang Li [1]
    1. [1] Northwest Normal University

      Northwest Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The goal of this paper is to deal with the elastic damping system with delay and nonlocal conditions in Banach space. Firstly, Schauder’s fixed point theorem is used to show the existence of mild solutions for our problem. Secondly, a Grönwall-Bellman inequality with delay is given, and the global asymptotic stability of the mild solution is discussed by using this inequality. Finally, a concrete example is given, which shows the feasibility of the abstract results in this paper.

  • Referencias bibliográficas
    • 1. Aizicovici, S., Staicu, V.: Multivalued evolution equations with nonlocal initial conditions in banach spaces. Nonlinear Differ. Equ. Appl....
    • 2. Bainov, D., Covachev, V., Stamova, I.: Estimates of the solutions of impulsive quasilinear functionaldifferential equations. Ann. Fac....
    • 3. Boucherif, A.: Semilinear evolution inclusions with nonlocal conditions. Appl. Math. Lett. 22(8), 1145–1149 (2009)
    • 4. Byszewski, L.: Application of preperties of the right hand sides of evolution equations to an investigation of nonlocal evolution problems....
    • 5. Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal cauchy problem. J. Math. Anal....
    • 6. Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract cauchy problem in a...
    • 7. Caicedo, A., Cuevas, C., Mophou, G., N’Guérékata, G.: Asymptotic behavior of solutions of some semilinear functional differential and integro-differential...
    • 8. Cao, N., Fu, X.: Existence results of solutions for a neutral evolution equation with nonlocal conditions on infinite interval. J. Math....
    • 9. Chalishajar, D., Kasinathan, D., Kasinathan, R., Kasinathan, R.: Viscoelastic kelvin-voigt model on ulam-hyer’s stability and t-controllability...
    • 10. Chen, G., Russell, D.L.: A mathematical model for linear elastic systems with structural damping. Quart. Appl. Math 39, 433–454 (1982)
    • 11. Chen, S., Triggiani, R.: Proof of extensions of two conjectures on structural damping for elastic systems: the systems: the case 1 2 ≤...
    • 12. Chen, S., Triggiani, R.: Gevrey class semigroups arising from elastic systems with gentle dissipation: the case 0 <α< 1 2 . Proceedings...
    • 13. Chen, P., Abdelmonem, A., Li, Y.: Global existence and asymptotic stability of mild solutions for stochastic evolution equations with...
    • 14. Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179,...
    • 15. Diagana, T.: Well-posedness for some damped elastic systems in banach spaces. Appl. Math. Lett. 71, 74–80 (2017)
    • 16. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisarc. K. S.: New discussion regarding approximate controllability for...
    • 17. Emmrich, E., Siska, D.: Full discretisation of second-order nonlinear evolution equations: strong convergence and applications. Comput...
    • 18. Emmrich, E., Thalhammer, M.: Convergence of a time discretisation for doubly nonlinear evolution equations of second order. Found. Comput....
    • 19. Engel, K.J., Nagel, R.: One-parameter Semigroups for Linear Evolution Equa-tions. Springer-Verlag, New York (2000)
    • 20. Ezzinbi, K., Fu, X., Hilal, K.: Existence and regularity in the α-norm for some neutral partial differential equations with nonlocal conditions....
    • 21. Fan, H., Gao, F.: Asymptotic stability of solutions to elastic systems with structural damping. Electron. J. Differential Equations 245,...
    • 22. Fan, H., Li, Y.: Analyticity and exponential stability of semigroup for elastic systems with structural damping in banach spaces. j. math....
    • 23. Fan, H., Li, Y.: Monotone iterative technique for the elastic systems with structural damping in banach spaces. comput. Math. Appl. 68,...
    • 24. Fan, H., Li, Y., Chen, P.: Existence of mild solutions for the elastic systems with structural damping in banach spaces. Abstract and...
    • 25. Gou, H.: A study on s-asymptotically w-periodic positive mild solutions for damped elastic systems. Bulletin des Science Mathématiques...
    • 26. Gou, H., Li, Y.: A study on damped elastic systems in banach spaces. Numer. Func. Anal. Opt 41, 542–570 (2020)
    • 27. Gou, H., Li, Y.: Mixed monotone iterative technique for damped elastic systems in banach spaces. J. Pseudo-Differ. Oper. Appl 11(2020),...
    • 28. Graber, P.J., Lasiecka, I.: Analyticity and gevrey class regularity for a strongly damped wave equation with hyperbolic dynamic boundary...
    • 29. Guo, D.: Nonlinear Functional Analysis. Shandong Science and Technology, Jinan ( Chinese) (1985)
    • 30. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cone. Academic Press, Orlando (1988)
    • 31. Guo, D., Sun, J.: Ordinary Differential Equations in Abstract Spaces. Shandong Science and Technology, Jinan (Chinese) (1989)
    • 32. He, M.X.: Global existence and stability of solutions for reaction diffusion functional differential equations. J. Math. Anal. Appl. 199,...
    • 33. He, M.X., Ou, Z.L., Liu, A.P.: Comparison method of partial functional differential equations and its application. Applied Math and Computation....
    • 34. Hernández, E.M., Tanaka, S.M.: Global solutions for abstract functional differential equations with nonlocal conditions. Electr. J. Qualti...
    • 35. Huang, F. L., Liu, K. S., Chen, G.: Differentiability of the semigroup associated with a structural damping model, in Proceedings of the...
    • 36. Huang, F.L.: On the holomorphic property of the semigroup associated with linear elastic systems with structural damping. Acta Mathematica...
    • 37. Huang, F.: A problem for linear elastic systems with structural damping. Acta-Math Ematica Scientia 6(1), 101–107 (1986). ((Chinese))
    • 38. Huang, F.L.: On the mathematical model for linear elastic systems with analytic damping. SIAM J. Control. Optim. 26(3), 714–724 (1988)
    • 39. Huang, F.L., Liu, K.S.: Holomorphic property and exponential stability of the semigroup associated with linear elastic systems with damping....
    • 40. Huang, F.L., Huang, Y.Z., Guo, F.M.: Holomorphic and differentiable properties of the co-semigroup associated with the euler-bernoulli...
    • 41. Huang, F., Huang, Y., Guo, F.: Analyticity and differentiability of the co-semigroup associated with euler-bernoulli beam equations with...
    • 42. Kasinathan, R., Kasinathan, R., Chalishajar, D., Kasinathan, D.: Various controllability results for fredholm-volterra type stochastic...
    • 43. Kasinathan, D., Kasinathan, R., Kasinathan, R., Chalishajar, D., Baleanu, D.: Dynamical behaviors of fractional neutral stochastic integro-differential...
    • 44. Kasinathan, D., Chalishajar, D., Kasinathan, R., Kasinathan, R., Karthikeyan, S.: Trajectory controllability of higher-order fractional...
    • 45. Li, Y.: The positive solutions of abstract semilinear evolution equations and their applications. Acta Math. Sin. (Chinese) 39, 666–672...
    • 46. Li, Y.: Existence and asymptotic stability of periodic solution for evolution equations with delays. J. Funct. Anal. 261, 1309–1324 (2011)
    • 47. Li, Q., Li, Y.: Positive periodic solutions for abstract evolution equations with delay. Positivity 25, 379–397 (2021)
    • 48. Li, D., Wang, Y.: Asymptotic behavior of gradient systems with small time delays. Nonlinear Anal.: Real World Appl. 11(3), 1627–1633 (2010)
    • 49. Li, F., Wang, H.: S-asymptotically ω-periodic mild solutions of neutral fractional differential equations with finite delay in banach...
    • 50. Liu, K., Liu, Z.: Analyticity and differentiability of semigroups associated with elastic systems with damping and gyroscopic forces....
    • 51. Liu, Z., Zhang, Q.: A note on the polynomial stability of a weakly damped elastic abstract system. Z. Angew. Math. Phys. 66(4), 1799–1804...
    • 52. Luong, V. T., Tung, N. T.: Decay mild solutions for elastic systems with structural damping involving nonlocal conditions. Vestnik St....
    • 53. Luong, V.T.: Decay mild solutions for two-term time fractional differentia quations in banach spaces. J. Fized Point Theory Appl 18(2),...
    • 54. Luong, V.T., Tung, N.T.: Exponential decay for elastic systems with structural damping and infinite delay. Appl. Anal. 99(1), 13–28 (2020)
    • 55. Ma, Y.K., Dineshkumar, C., Vijayakumar, V., Udhayakumar, R., Shukla, A., Nisar, K.S.: Approximate controllability of atangana-baleanu...
    • 56. Olszowy, L., Wedrychowicz, S.: On the existence and asymptotic behaviour of solutions of an evolution equation and an application to the...
    • 57. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. SpringerVerlag, New York (1983)
    • 58. Rubbioni, P.: Asymptotic stability of solutions for some classes of impulsive differential equations with distributed delay. Nonlinear...
    • 59. Singh, A., Vijayakumar, V., Shukla, A., Chauhan, S.: A note on asymptotic stability of semilinear thermoelastic system. Qualitative Theory...
    • 60. Travis, C.C., Webb, G.F.: Existence and stability for partial functional differential equations. Trans Amer Math Soc. 200, 395–481 (1974)
    • 61. Travis, C.C., Webb, G.F.: Partial differential equations with deviating arguments in the time variable. J. Math. Anal. Appl. 56, 397–409...
    • 62. Travis, C.C., Webb, G.F.: Functional differential equations and nonlinear semigroups in l p spaces. J. Diff. Eqs. 20, 71–89 (1976)
    • 63. Travis, C.C., Webb, G.F.: Existence, stability and compactness in the α-norm for partial functional differential equations. Trans Amer...
    • 64. Triggiani, R.: On the stabilizability problem in banach space. J. Math. Anal. Appl. 52, 383–403 (1975)
    • 65. Vrabie, I.I.: Existence in the large for nonlinear delay evolution inclusions with nonlocal initial conditions. J. Funct. Anal. 262(4),...
    • 66. Wang, R.N., Zhu, P.X.: Non-autonomous evolution inclusions with nonlocal history conditions: global integral solutions. Nonlinear Anal....
    • 67. Wang, Z., Liu, Y., Liu, X.: On global asymptotic stability of neural networks with discrete and distributed delays. Phys. Lett. A 345,...
    • 68. Wei, S.: Global existence of mild solutions for the elastic system with structural damping. Ann. Appl. Math. 35, 180–188 (2019)
    • 69. Wei, M., Li, Y.: Monotone iterative technique for nonlocal problems of damped elastic systems with delay. Dyn. Syst 37(3), 444–465 (2022)
    • 70. Wei, M., Li, Y., Li, Q.: Positive mild solutions for damped elastic systems with delay and nonlocal conditions in ordered banach spaces....
    • 71. Wu, J., Fu, X.: On solutions of a semilinear measure-driven evolution equation with nonlocal conditions on infinite interval. Math. Nachr....
    • 72. Xiao, T., Liang, J.: Existence of classical solutions to non-autonomous non-local parabolic problems. Nonlinear Anal.: Theory Methods...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno