Ir al contenido

Documat


Dynamics and Exact Traveling Wave Solutions of Rosenau-Hyman’s K(−2, −2) Equation

  • Yanfei Dai [1] ; Jibin Li [1]
    1. [1] Zhejiang Normal University

      Zhejiang Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate dynamics and exact solutions of the traveling wave system of Rosenau-Hyman’s K(−2, −2) equation. Under given parameter conditions, bifurcations of phase portraits in the trvaling wave system are revealed. Corresponding to all bounded solutions of the traveling wave system, 16 explicit exact parametric representations are derived.

  • Referencias bibliográficas
    • 1. Benson, A., Palencia, J., Valenzuela, E., Reyes, E.: The integrable rosenau-hyman equations: analysis, symmetries, and their geometriccontent....
    • 2. Euler, M., Euler, N., Heredero, R., Reyes, E.G.: Compacton equations and integrability: the rosenauhymanand cooper-shepard-sodano equations....
    • 3. Rosenau, P., Hyman, J.M.: Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70, 564–567 (1993)
    • 4. Rosenau, P.: On solitons, compactons, and lagrange maps. Phys. Lett. A 211, 265–275 (1996)
    • 5. Rosenau, P.: On nonanalytic solitary waves formed by a nonlinear dispersion. Phys. Lett. A 230, 305–318 (1997)
    • 6. Rosenau, P.: What is a compacton? Notices Amer. Math. Soc. 52, 738–739 (2005)
    • 7. Lou, S., Wu, Q.: Painlevé integrability of two sets of nonlinear evolution equations with nonlinear dispersions. Phys. Lett. A 262(4–5),...
    • 8. Marinakis, V.: Comment on “Painlevé integrability of two sets of nonlinear evolution equations with nonlinear dispersions” [Phys. Lett....
    • 9. Qiao, Z.: New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and m/w-shape peak solitons. J. Math. Phys. 48,...
    • 10. Li, J., Qiao, Z.: Bifurcations of traveling wave solutions for an integrable equation. J. Math. Phys. 51, 042703 (2010)
    • 11. Sakovich, S.: Smooth soliton solutions of a new integrable equation by qiao. J. Math. Phys. 52, 023509 (2011)
    • 12. Ivanov, R.I., Lyons, T.: Dark solitons of the qiao’s hierarchy. J. Math. Phys. 53, 123701 (2012)
    • 13. Li, J., Chen, G.: On a class of singular nonlinear traveling wave equations. Int. J. Bifurcation and Chaos 17, 4049–4065 (2007)
    • 14. Li, J.: Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions. Science Press, Beijing (2013)
    • 15. Li, J., Zhu, W., Chen, G.: Understanding peakons, periodic peakons and compactons via a shallow water wave equation. Int. J. Bifurcation...
    • 16. Han, M.: Bifurcation Theory of Limit Cycles. Science Press, Beijing (2013)
    • 17. Cheng, R., Luo, Z., Hong, X.: Bifurcations and new traveling wave solutions for the nonlinear dispersion drinfel’d-sokolov (d(m, n)) system....
    • 18. Zhao, K., Wen, Z.: Explicit traveling wave solutions and their dynamical behaviors for the coupled higgs field equation. J. Nonl. Mod....
    • 19. Li, J., Han, M., Ke, A.: Bifurcations and exact traveling wave solutions of the khorbatly’s geophysical boussinesq system. J. Math. Anal....
    • 20. Dai, Y., Li, J.: Bifurcations and chaos in a cantilever beam vibration model with small damping and periodic forced terms. Int. J. Bifurcation...
    • 21. Li, J., Shi, Z.: Traveling wave solutions of some abcd-water wave models describing small amplitude, long wavelength gravity waves on...
    • 22. Wu, R., Chen, G., Li, J.: Bifurcations and exact solutions of optical soliton models in fifth-order weakly nonlocal nonlinear media. Int....
    • 23. Zhuang, J., Zhou, Y., Li, J.: Bifurcations and exact solutions of the derivative nonlinear schrödinger equations dnlsi-dnlsiii: dynamical...
    • 24. Li, J., Ke, A.: Dynamical behavior and exact explicit traveling wave solutions of a generalized vakhnenko-parkes equation. Qual. Theory...
    • 25. Shi, Z., Nie, L., Li, J.: Exact solutions of two high order derivative nonlinear schrödinger equations: dynamical system method. J. Appl....
    • 26. Zhou, Y., Zhuang, J., Li, J.: Bifurcations and exact traveling wave solutions for the generalized alexeyev’s a± equation. Qual. Theory...
    • 27. Li, J., Dai, Y.: Bifurcations and exact traveling wave solutions for the model of slightly dispersive quasi-incompressible hyperelastic...
    • 28. Yildirim, Y., Biswas, A., Khan, S., Belic, M.: Embedded solitons with χ(2) and χ(3) nonlinear susceptibilities. Semicond. Phys. Quant....
    • 29. Han, T., Zhang, K., Jiang, Y., et al.: Chaotic pattern and solitary solutions for the (2 + 1)-dimensional beta-fractional double-chain...
    • 30. Han, T., Liang, Y., Fan,W.: Dynamics and soliton solutions of the perturbed schrödinger-hirota equation with cubic-quintic-septic nonlinearity...
    • 31. Ekici, M., Sonmezoglu, A.: Optical solitons with biswas-arshed equation by extended trial function method. Optik 177, 13–20 (2019)
    • 32. Irshad, S., Shakeel, M., Bibi, A., et al.: Comparative study of nonlinear fractional schrödinger equation in optics. Mod. Phys. Lett....
    • 33. Rabie, W., Ahmed, H.: Diverse exact and solitary wave solutions to new extended kdv6 equation using im extended tanh-function technique....
    • 34. Ghayad, M., Badra, N., Ahmed, H., et al.: Highly dispersive optical solitons in fiber bragg gratings with cubic quadratic nonlinearity...
    • 35. Ahmed, M., Zaghrout, A., Ahmed, H., et al.: Optical solitons for the stochastic perturbed schrödingerhirota equation using two different...
    • 36. Byrd, P.F., Fridman, M.D.: Handbook of Elliptic Integrals for Engineers and Sciensists. Springer, Berlin (1971)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno