Ir al contenido

Documat


Bifurcations and Exact Traveling Wave Solutions for the Generalized Alexeyev’s A± Equation

  • Yan Zhou [1] ; Jinsen Zhuang [1] ; Jibin Li [2]
    1. [1] Huaqiao University

      Huaqiao University

      China

    2. [2] Zhejiang Normal University

      Zhejiang Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider the bifurcations and traveling wave solutions for the generalized A± equation, which we construct from the Alexeyev’s A± equation. Based on the theory of dynamical system, we study the corresponding traveling wave system and bifurcations of its phase orbit portraits. Furthermore, according to the energy level curves of the phase portraits, we analyze all kinds of bounded solutions, and derive the exact representations for the solutions including periodic peakons, peakons, smooth periodic wave solutions, solitary wave solutions, kink wave solutions as well as compacton solution family.

  • Referencias bibliográficas
    • 1. Camassa, R., Hyman, J.M., Luce, B.P.: Nonlinear waves and solitons in physical sysytems. Phys. D. 123, 1–20 (1998)
    • 2. Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)
    • 3. Raza, N., Jhangeer, A., Arshed, S., Butt, A.R., Chu, Y.: Dynamical analysis and phase portraits of two-mode waves in different media. Result....
    • 4. Rafiq, M.H., Raza, N., Jhangeer, A.: Nonlinear dynamics of the generalized unstable nonlinear Schrödinger equation: a graphical perspective....
    • 5. Alexeyev, A.A.: A multidimensional superposition principle: classical solitons IV. J. Nonlinear Math. Phys. 25(1), 1–33 (2018)
    • 6. Alexeyev, A.A.: On the integrability and solitons of the A ± −equation. Phys. Lett. A. 472, 128809 (2023)
    • 7. Li, J., Chen, G.: Bifurcations of traveling wave solutions for four classes of nonlinear wave equations. Int. J. Bifur. Chaos. 15, 3973–3998...
    • 8. Li, J., Chen, G.: On a class of singular nonlinear traveling wave equations. Int. J. Bifur. Chaos. 17, 4049–4065 (2007)
    • 9. Rosenau, P., Hyman, J.M.: Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70, 564–567 (1993)
    • 10. Rosenau, P., Hyman, J.M.: New wave mathematics. What’s. Happen. Mathemat. Sci. 2, 14–17 (1994)
    • 11. Rosenau, P.: On nonanalytic solitary waves formed by a nonlinear dispersion. Phys. Lett. A. 230, 305–318 (1997)
    • 12. Li, J.: Singular nonlinear traveling wave equations: bifurcation and exact solutions. Science Press, Beijing (2013)
    • 13. Li, J., Chen, G.: On a class of singular nonlinear traveling wave equations. Int. J. Bifur. Chaos. 17, 4049–4065 (2017)
    • 14. Zhou, Y., Zhuang, J., Li, J.: Bifurcations and exact traveling wave solutions in two nonlinear wave systems. Int. J. Bifur. Chaos. 31,...
    • 15. Byrd, P.F., Fridman, M.D.: Handbook of elliptic intrgrals for engineers and sciensists. Springer, Berlin (1971)
    • 16. Olver, P., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E. 53,...
    • 17. Camassa, R., Holm, D.D.: An integrable shallow water equation with peak solutions. Phys. Rev. Lett. 71(11), 1161–1164 (1993)
    • 18. Camassa, R., Holm, D.D., Hyman, J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)
    • 19. Degasperis, A., Procesi, M.: Asymptotic integrability. Symmet. Perturb. Theor. 1, 23–27 (1999)
    • 20. Qiao, Z.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701–09 (2006)
    • 21. Novikov, V.: Generalizations of the Camassa-Holm equation. J. Phys. A: Math. Theor. 42, 342002 (2009)
    • 22. Fokas, A.S.: On class of physically important integrable equations. Phys. D. 87, 145–15 (1995)
    • 23. Li, J., Zhu, W., Chen, G.: Understanding peakons, periodic peakons and compactons via a shallow water wave equation. Int. J. Bifur. Chaos...
    • 24. Li, J., Qiao, Z.: Peakon, pseudo-peakon, and cuspon solutions for two generalized Camassa-Holm equations. J. Math. Phys. 54, 123501 (2013)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno