Ir al contenido

Documat


Integral points on cubic surfaces: heuristics and numerics

  • Tim Browning [1] ; Florian Wilsch [2]
    1. [1] IST Austria, Austria
    2. [2] Göttingen University, Germany
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01074-1
  • Enlaces
  • Resumen
    • We develop a heuristic for the density of integer points on affine cubic surfaces. Our heuristic applies to smooth surfaces defined by cubic polynomials that are log K3, but it can also be adjusted to handle singular cubic surfaces. We compare our heuristic to Heath-Brown’s prediction for sums of three cubes, as well as to asymptotic formulae in the literature around Zagier’s work on the Markoff cubic surface, and work of Baragar and Umeda on further surfaces of Markoff-type. We also test our heuristic against numerical data for several families of cubic surfaces.

  • Referencias bibliográficas
    • Baragar, A., Umeda, K.: The asymptotic growth of integer solutions to the Rosenberger equations. Bull. Austral. Math. Soc. 69, 481–497 (2004)
    • Batyrev, V.V., Tschinkel, Y.: Tamagawa numbers of polarized algebraic varieties. Astérisque 251, 299–340 (1998)
    • Birch, B.J.: Forms in many variables. Proc. Roy. Soc. Ser. A 265, 245–263 (1961/62)
    • Booker, A.: Cracking the problem with 33. Res. Number Theory 5, 5–26 (2019)
    • Booker, A., Sutherland, A.V.: On a question of Mordell. Proc. Natl. Acad. Sci. U.S.A. 118(11), e2022377118 (2021)
    • Borovoi, M., Rudnick, Z.: Hardy-Littlewood varieties and semisimple groups. Invent. Math. 119, 37–66 (1995)
    • de la Bretèche, R., Browning, T.D.: Manin’s conjecture for quartic del Pezzo surfaces with a conic fibration. Duke Math. J. 160, 1–69 (2011)
    • Browning, T., Sutherland, A., Wilsch, F.: Data and code for Integral points on cubic surfaces: heuristics and numerics, (2024), https://doi.org/10.25625/4FLFH8
    • Cassels, J.W.S.: A note on the Diophantine equation x3 + y3 + z3 = 3. Math. Comp. 44, 265–266 (1985)
    • Chambert-Loir, A., Tschinkel, Y.: Igusa integrals and volume asymptotics in analytic and adelic geometry. Confluentes Math. 2, 351–429 (2010)
    • Chen, W.: Nonabelian level structures, Nielsen equivalence, and Markoff triples. Annals of Math. 199, 301–443 (2024)
    • Chen, X., Zhu, Y.: A1 curves on log K3 surfaces. Advances Math. 313, 718–745 (2017)
    • Coccia, S.: The Hilbert Property for integral points of affine smooth cubic surfaces. J. Number Theory 200, 353–379 (2019)
    • Colliot-Thélène, J.-L., Kanevsky, D., Sansuc, J.-J.: Arithmétique des surfaces cubiques diagonales. Diophantine approximation and transcendence...
    • Colliot-Thélène, J.-L., Wei, D., Xu, F.: Brauer-Manin obstruction for Markoff surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 21, 1257–1313...
    • Colliot-Thélène, J.-L., Wittenberg, O.: Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines. Amer. J. Math. 134,...
    • Colliot-Thélène, J.-L., Xu, F.: Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic...
    • Duke, W., Friedlander, J.B., Iwaniec, H.: Bounds for automorphic L-functions. Invent. Math. 112, 1–8 (1993)
    • Gamburd, A., Magee, M., Ronan, R.: An asymptotic formula for integer points on Markoff-Hurwitz varieties. Annals of Math. 190, 751–809 (2019)
    • Getz, J.: Secondary terms in asymptotics for the number of zeros of quadratic forms over number fields. J. London Math. Soc. 98, 275–305 (2018)
    • Ghosh, A., Sarnak, P.: Integral points on Markoff type cubic surfaces. Invent. Math. 229, 689–749 (2022)
    • Greenblatt, M.: Resolution of singularities, asymptotic expansions of integrals and related phenomena. J. d’Analyse Math. 111, 221–245 (2010)
    • Harpaz, Y.: Geometry and arithmetic of certain log K3 surfaces. Ann. Inst. Fourier 67, 2167–2200 (2017)
    • Heath-Brown, D.R.: The density of zeros of forms for which weak approximation fails. Math. Comput. 59, 613–623 (1992)
    • Heath-Brown, D.R.: A new form of the circle method and its application to quadratic forms. J. Reine Angew. Math. 481, 149–206 (1996)
    • Heath-Brown, D. R.: The circle method and diagonal cubic forms. R. Soc. Lond. Philos. Trans. Ser. A 356, 673–699 (1998)
    • Ireland, K., Rosen, M.: A classical introduction to modern number theory, 2nd edn. Springer-Verlag (1990)
    • Jahnel, J.: Brauer groups, Tamagawa measures, and rational points on algebraic varieties. American Math. Soc., (2014)
    • Jin, Y., Schmidt, A.: A Diophantine equation appearing in Diophantine approximation. Indag. Mathem. 12, 477–482 (2001)
    • Lehmer, D.H.: On the Diophantine equation x3 + y3 + z3 = 1. J. London Math. Soc. 31, 275–280 (1956)
    • Loughran, D., Mitankin, V.: Integral Hasse principle and strong approximation for Markoff surfaces. Int. Math. Res. Not. IMRN 18, 14086–14122...
    • Lyczak, J., Mitankin, V., Uppal, H.: Cubic surfaces failing the integral Hasse principle. Preprint, (2024). arXiv:2311.10008
    • Mahler, K.: Note on Hypothesis K of Hardy and Littlewood. J. London Math. Soc. 11, 136–138 (1936)
    • Manin, Y.I.: Cubic forms, 2nd edn. North- Holland, Amsterdam, New York and Oxford (1986)
    • Mordell, L.J.: On the integer solutions of the equation x2 + y2 + z2 + 2xyz = n. J. London Math. Soc. 28, 500–510 (1953)
    • Peyre, E.: Hauteurs et mesures de Tamagawa sur les variétés de Fano. Duke Math. J. 79, 101–218 (1995)
    • Peyre, E.: Points de hauteur bornée, topologie adélique et mesures de Tamagawa. J. Théor. Nombres Bordeaux 15, 319–345 (2003)
    • Peyre, E.: Beyond heights: slopes and distribution of rational points. Arakelov geometry and diophantine applications, 1–67, Lecture Notes...
    • Peyre, E., Tschinkel, Yu.: Tamagawa numbers of diagonal cubic surfaces of higher rank. Rational points on algebraic varieties, 275–305, Progr....
    • Salberger, P.: Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque 251, 91–258 (1998)
    • Santens, T.:Manin’s conjecture for integral points on toric varieties. Preprint, (2024). arXiv:2312.13914
    • Segre, B.: A note on arithmetical properties of cubic surfaces. J. London Math. Soc. 18, 24–31 (1943)
    • Serre, J.-P.: Lectures on NX (p). Chapman & Hall/CRC Research Notes in Mathematics, vol. 11. CRC Press, Boca Raton, FL (2012)
    • Titchmarsh, E.C.: The theory of the Riemann zeta-function. 2nd ed., edited by D.R. Heath-Brown, Oxford University Press, (1986)
    • Tran, T.: Secondary terms in asymptotics for the number of zeros of quadratic forms. Ph.D. thesis, Duke Univeristy, (2020)
    • Varchenko, A.N.: Newton polyhedra and estimates of oscillatory integrals. Functional Anal. Appl. 18, 175–196 (1976)
    • Wei, D., Xu, F.: Counting integral points in certain homogeneous spaces. J. Algebra 448, 350–398 (2016)
    • Wilsch, F.: Integral points of bounded height on a certain toric variety. Trans. Amer. Math. Soc. 11, 567–599 (2024)
    • Zagier, D.: On the number of Markoff numbers below a given bound. Math. Comp. 39, 709–723 (1982)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno