Ir al contenido

Documat


q-Whittaker functions, finite fields, and Jordan forms

  • Steven N. Karp [1] ; Hugh Thomas [2]
    1. [1] University of Notre Dame

      University of Notre Dame

      Township of Portage, Estados Unidos

    2. [2] University of Quebec at Montreal

      University of Quebec at Montreal

      Canadá

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01048-3
  • Enlaces
  • Resumen
    • The q-Whittaker function Wλ(x;q)W_\lambda(\mathbf{x}; q)Wλ(x;q) associated to a partition λ\lambdaλ is a q-analogue of the Schur function sλ(x)s_\lambda(\mathbf{x})sλ(x), and is defined as the t=0t = 0t=0 specialization of the Macdonald polynomial Pλ(x;q,t)P_\lambda(\mathbf{x}; q, t)Pλ(x;q,t). We show combinatorially how to expand Wλ(x;q)W_\lambda(\mathbf{x}; q)Wλ(x;q) in terms of partial flags compatible with a nilpotent endomorphism over the finite field of size 1/q1/q1/q. This yields an expression analogous to a well-known formula for the Hall–Littlewood functions. We show that considering pairs of partial flags and taking Jordan forms leads to a probabilistic bijection between nonnegative-integer matrices and pairs of semistandard tableaux of the same shape, proving the Cauchy identity for q-Whittaker functions. We call our probabilistic bijection the q-Burge correspondence, and prove that in the limit as q→0q \to 0q→0, we recover a description of the classical Burge correspondence (also known as column RSK) due to Rosso (2012). A key step in the proof is the enumeration of an arbitrary double coset of GLn\mathrm{GL}_nGLn modulo two parabolic subgroups, which we find to be of independent interest. As an application, we use the q-Burge correspondence to count isomorphism classes of certain modules over the preprojective algebra of a type A quiver (i.e. a path), refined according to their socle filtrations. This develops a connection between the combinatorics of symmetric functions and the representation theory of preprojective algebras.

  • Referencias bibliográficas
    • Agresti, A.: A survey of exact inference for contingency tables. Statist. Sci. 7(1), 131–153 (1992)
    • Aigner, F., Frieden, G.: qRSt: a probabilistic Robinson–Schensted correspondence for Macdonald polynomials. Int. Math. Res. Not. IMRN 17,...
    • Assem, I., Simson, D., Skowro ´nski, A.: Elements of the representation theory of associative algebras. Vol. 1, volume 65 of London Mathematical...
    • Behrend, K. A.: The Lefschetz trace formula for algebraic stacks. Invent. Math. 112(1), 127–149 (1993)
    • Bergeron, F.: A survey of q-Whittaker polynomials. arXiv:2006.12591 (2020)
    • Bernstein, S.: Sur la représentation des polynomes positifs. Comm. Soc.Math. Kharkow (2), 14(5):227– 228 (1915)
    • Billey, S. C., Konvalinka, M., Petersen, T. K., Slofstra, W., Tenner, B. E.: Parabolic double cosets in Coxeter groups. Electron. J. Combin.,...
    • Björner, A., Brenti, F.: Combinatorics of Coxeter groups. Graduate Texts in Mathematics, vol. 231. Springer, New York (2005)
    • Borho, W., MacPherson, R.: Partial resolutions of nilpotent varieties. In: Analysis and topology on singular spaces. II, III (Luminy, 1981),...
    • Borodin, A. M.: Limit Jordan normal form of large triangular matrices over a finite field. Funktsional. Anal. i Prilozhen. 29(4), 72–75 (1995)
    • Borodin, A. M.: The law of large numbers and the central limit theorem for the Jordan normal form of large triangular matrices over a finite...
    • Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Related Fields 158(1–2), 225–400 (2014)
    • Borodin, A., Petrov, L.: Nearest neighbor Markov dynamics on Macdonald processes. Adv. Math. 300, 71–155 (2016)
    • Bourbaki, N.: Groupes et algèbres de Lie. Chapitres IV, V et VI. Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris (1968)
    • Bozec, T., Schiffmann, O., Vasserot, É.: On the number of points of nilpotent quiver varieties over finite fields. Ann. Sci. Éc. Norm. Supér....
    • Brion, M.: Lectures on the geometry of flag varieties. In Topics in cohomological studies of algebraic varieties, Trends Math., pages 33–85....
    • Britz, T., Fomin, S.: Finite posets and Ferrers shapes. Adv. Math. 158(1), 86–127 (2001)
    • Brundan, J., Ostrik, V.: Cohomology of Spaltenstein varieties. Transform. Groups 16(3), 619–648 (2011)
    • Bufetov, A., Matveev, K. Hall–Littlewood RSK field. Selecta Math. (N.S.), 24(5):4839–4884 (2018)
    • Bufetov, A., Petrov, L.: Yang–Baxter field for spin Hall–Littlewood symmetric functions. Forum Math. Sigma, 7:Paper No. e39, 70 (2019)
    • Burge, W. H.: Four correspondences between graphs and generalized Young tableaux. J. Combinatorial Theory Ser. A 17, 12–30 (1974)
    • Crawley-Boevey, W., Van den Bergh, M.: Absolutely indecomposable representations and Kac–Moody Lie algebras. Invent. Math., 155(3):537–559...
    • Diaconis, P., Gangolli, A.: Rectangular arrays with fixed margins. In Discrete probability and algorithms (Minneapolis, MN, 1993), volume...
    • Dranowski, A., Elek, B., Kamnitzer, J., Morton-Ferguson, C.: Heaps, crystals, and preprojective algebra modules. Selecta Math. (N.S.), 30(5):Paper...
    • Erdmann, K., Skowro ´nski, A.: The stable Calabi–Yau dimension of tame symmetric algebras. J. Math. Soc. Japan 58(1), 97–128 (2006)
    • Fomin, S. V.: Generalized Robinson–Schensted–Knuth correspondence. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 155:156–175...
    • Fomin, S.: Schensted algorithms for dual graded graphs. J. Algebraic Combin. 4(1), 5–45 (1995)
    • Fresse, L.: Existence of affine pavings for varieties of partial flags associated to nilpotent elements. Int. Math. Res. Not. IMRN 2, 418–472...
    • Fulman, J.: The eigenvalue distribution of a random unipotent matrix in its representation on lines. J. Algebra 228(2), 497–511 (2000)
    • Fulton, W.: Young tableaux. London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)
    • Gansner, E. R.: Acyclic digraphs, Young tableaux and nilpotent matrices. SIAM J. Algebraic Discrete Methods 2(4), 429–440 (1981)
    • Gantmacher, F. R.: The theory of matrices. Vols. 1, 2. Translated by K. A. Hirsch. Chelsea Publishing Co., New York (1959)
    • Garsia, A. M., Stanton, D.: Group actions on Stanley–Reisner rings and invariants of permutation groups. Adv. in Math. 51(2), 107–201 (1984)
    • Garver, A., Patrias, R., Thomas, H.: Minuscule reverse plane partitions via quiver representations. Selecta Math. (N.S.), 29(3):Paper No....
    • Gerasimov, A., Lebedev, D., Oblezin, S.: On a classical limit of q-deformed Whittaker functions. Lett. Math. Phys. 100(3), 279–290 (2012)
    • Green, R. M.: Combinatorics of minuscule representations. Cambridge Tracts in Mathematics, vol. 199. Cambridge University Press, Cambridge...
    • Haiman, M.: Combinatorics, symmetric functions, and Hilbert schemes. In Current developments in mathematics, 2002, pages 39–111. Int. Press,...
    • Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Positivity for Kac polynomials and DT-invariants of quivers. Ann. of Math. (2), 177(3):1147–1168...
    • Hopkins, S.: RSK via local transformations. http://samuelfhopkins.com/docs/rsk.pdf (2014)
    • Hotta, R., Springer, T. A.: A specialization theorem for certain Weyl group representations and an application to the Green polynomials of...
    • Imamura, T., Mucciconi, M., Sasamoto, T.: Skew RSK dynamics: Greene invariants, affine crystals and applications to q-Whittaker polynomials....
    • Kac, V. G.: Root systems, representations of quivers and invariant theory. In Invariant theory (Montecatini, 1982), volume 996 of Lecture...
    • Kirillov, A., Jr.: Quiver representations and quiver varieties. Graduate Studies in Mathematics, vol. 174. American Mathematical Society,...
    • Kirillov, A. A.: Variations on the triangular theme. In Lie groups and Lie algebras: E. B. Dynkin’s Seminar, volume 169 of Amer. Math. Soc....
    • Kirillov, A. N.: New combinatorial formula for modified Hall–Littlewood polynomials. In q-series from a contemporary perspective (South Hadley,...
    • Knuth, D. E.: Permutations, matrices, and generalized Young tableaux. Pacific J. Math. 34, 709–727 (1970)
    • Lang, S., Weil, A.: Number of points of varieties in finite fields. Amer. J. Math. 76, 819–827 (1954)
    • Macdonald, I. G.: Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press,...
    • Matveev, K., Petrov, L.: q-randomized Robinson–Schensted–Knuth correspondences and random polymers. Ann. Inst. Henri Poincaré D 4(1), 1–123...
    • Mozgovoy, S.: Motivic Donaldson–Thomas invariants and McKay correspondence. arXiv:1107.6044, (2011)
    • Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras. Duke Math. J. 76(2), 365–416 (1994)
    • Nakajima, H.: Quiver varieties and Kac–Moody algebras. Duke Math. J. 91(3), 515–560 (1998)
    • O’Connell, N., Pei, Y.: A q-weighted version of the Robinson–Schensted algorithm. Electron. J. Probab., 18:no. 95, 25, (2013)
    • Okounkov, A.: Infinite wedge and random partitions. Selecta Math. (N.S.), 7(1):57–81, (2001)
    • Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram....
    • Pei, Y.: A q-Robinson–Schensted–Knuth algorithm and a q-polymer. Electron. J. Combin., 24(4):Paper No. 4.6, 38, (2017)
    • Poljak, S.: Maximum rank of powers of a matrix of a given pattern. Proc. Amer. Math. Soc. 106(4), 1137–1144 (1989)
    • Proctor, R. A.: Bruhat lattices, plane partition generating functions, and minuscule representations. European J. Combin. 5(4), 331–350 (1984)
    • Reineke, M.: Counting rational points of quiver moduli. Int. Math. Res. Not., pages Art. ID 70456, 19, (2006)
    • Robinson, G. de B.: On the representations of the symmetric group. Amer. J. Math., 60(3):745–760, (1938)
    • Rosso, D.: Classic and mirabolic Robinson–Schensted–Knuth correspondence for partial flags. Canad. J. Math. 64(5), 1090–1121 (2012)
    • Saks, M.: Dilworth numbers, incidence maps and product partial orders. SIAM J. Algebraic Discrete Methods 1(2), 211–215 (1980)
    • Schensted, C.: Longest increasing and decreasing subsequences. Canadian J. Math. 13, 179–191 (1961)
    • Schiffmann, O. G.: Kac polynomials and Lie algebras associated to quivers and curves. In Proceedings of the International Congress of Mathematicians—Rio...
    • Spaltenstein, N.: The fixed point set of a unipotent transformation on the flag manifold. Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag....
    • Spaltenstein, N.: Classes unipotentes et sous-groupes de Borel. Lecture Notes in Mathematics, vol. 946. Springer-Verlag, Berlin-New York (1982)
    • Springer, T. A.: A construction of representations of Weyl groups. Invent. Math. 44(3), 279–293 (1978)
    • Stanley, R. P.: Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,...
    • Stanley, R. P.: Enumerative combinatorics. Volume 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,...
    • Steinberg, R.: On the desingularization of the unipotent variety. Invent. Math. 36, 209–224 (1976)
    • Steinberg, R.: An occurrence of the Robinson–Schensted correspondence. J. Algebra 113(2), 523–528 (1988)
    • van Leeuwen, M. A. A.: Spin-preserving Knuth correspondences for ribbon tableaux. Electron. J. Combin. 12:Research Paper 10, 65 (2005)
    • Vernet, T.: Counting representations of quivers with multiplicities. arXiv:2405.14914 (2024)
    • Yip,M.: Rook placements and Jordan forms of upper-triangular nilpotent matrices. Electron. J. Combin. 25(1):Paper No. 1.68, 25 (2018)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno