Ir al contenido

Documat


Heaps, crystals, and preprojective algebra modules

  • Anne Dranowski [1] ; Balázs Elek [2] ; Joel Kamnitzer [3] ; Calder Morton-Ferguson [4]
    1. [1] University of Southern California

      University of Southern California

      Estados Unidos

    2. [2] University of British Columbia

      University of British Columbia

      Canadá

    3. [3] McGill University

      McGill University

      Canadá

    4. [4] Stanford University

      Stanford University

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00978-8
  • Enlaces
  • Resumen
    • Fix a simply-laced semisimple Lie algebra. We study the crystal B(nλ), were λ is a dominant minuscule weight and n is a natural number. On one hand, B(nλ) can be realized combinatorially by height n reverse plane partitions on a heap associated to λ. On the other hand, we use this heap to define a module over the preprojective algebra of the underlying Dynkin quiver. Using the work of Saito and Savage–Tingley, we realize B(nλ) via irreducible components of the quiver Grassmannian of n copies of this module. In this paper, we describe an explicit bijection between these two models for B(nλ) and prove that our bijection yields an isomorphism of crystals. Our main geometric tool is Nakajima’s tensor product quiver varieties.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno