Ir al contenido

Documat


Topological recursion for generalised Kontsevich graphs and r-spin intersection numbers

  • Raphaël Belliard [1] ; Séverin Charbonnier [3] ; Bertrand Eynard [4] ; Elba Garcia-Failde [2]
    1. [1] Humboldt University of Berlin

      Humboldt University of Berlin

      Berlin, Stadt, Alemania

    2. [2] Institut des Hautes Études Scientifiques

      Institut des Hautes Études Scientifiques

      Arrondissement de Palaiseau, Francia

    3. [3] Max Planck Institut für Mathematik, Germany
    4. [4] Institut de Physique Théorique-CEA Saclay, France
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01081-2
  • Enlaces
  • Resumen
    • In 1992, Kontsevich introduced certain ribbon graphs [47] as cell decompositions for combinatorial models of moduli spaces of complex curves with boundaries in his proof of Witten’s conjecture [59]. In this work, we define four types of generalised Kontsevich graphs and find combinatorial relations among them. We call the main type ciliated maps and use the auxiliary ones to show they satisfy a Tutte recursion that we turn into a combinatorial interpretation of the loop equations of topological recursion for a large class of spectral curves. It follows that ciliated maps, which are Feynman graphs for the Generalised Kontsevich matrix Model (GKM), are computed by topological recursion. The GKM relates to the r-KdV integrable hierarchy and since the string solution of the latter encodes intersection numbers with Witten’sr-spin class, we find an expression for the generating series of ciliated maps in terms ofr-spin intersection numbers, implying that they are also governed by topological recursion. In turn, this paves the way towards a combinatorial understanding of Witten’s class. This new topological recursion perspective on the GKM also provides concrete tools to explore the conjectural symplectic invariance property of topological recursion for large classes of spectral curves.

  • Referencias bibliográficas
    • Adler, M., van Moerbeke, P.: A matrix integral solution to two-dimensional wp-gravity. Comm. Math. Phys. 147, 25–56 (1992)
    • Alexandrov, A., Mironov, A., Morozov, A.: Solving Virasoro constraints in matrix models. Fortschr. Phys. 53(5–6), 512–521 (2005). arxiv:hep-th/0412205
    • Borot, G., Bouchard, V., Chidambaram, N., Creutzig, T., Noshchenko, D.: Higher airy structures, w algebras and topological recursion. Mem....
    • Borot, G., Bouchard, V., Chidambaram, N.K., Kramer, R., Shadrin, S.: Taking limits in topological recursion. (2023). arXiv preprint arxiv:math.AG/2309.01654
    • Borot, G., Charbonnier, S., Do, N., Garcia-Failde, E.: Relating ordinary and fully simple maps via monotone Hurwitz numbers. Electron. J....
    • Borot, G., Eynard, B.: All order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials. Quantum...
    • Borot, G., Eynard, B., Mulase, M., Safnuk, B.: A matrix model for simple Hurwitz numbers, and topological recursion. J. Geom. Phys. 61(2),...
    • Borot, G., Garcia-Failde, E.: Simple Maps, Hurwitz Numbers, and Topological Recursion. Comm. Math. Phys. 380(2), 581–654 (2020). arxiv:math-ph/1710.07851
    • Borot, G., Kramer, R., Lewa ´nski, D., Popolitov, A., Shadrin, S. et al.: Special cases of the orbifold version of Zvonkine’s r-ELSV formula....
    • Borot, G., Shadrin, S.: Blobbed topological recursion: properties and applications. Math. Proc. Cam. Phil. Soc. 162(1), 39–87 (2017). arxiv:math-ph/1502.00981
    • Bouchard, V., Eynard, B.: Think globally, compute locally. J. High Energy Phys. 143, (2013). arxiv:math-ph/1211.2302
    • Bouchard, V., Eynard, B.: Reconstructing WKB from topological recursion. J. Éc. polytech. Math. 4, 845–908 (2017). arxiv:math-ph/1606.04498
    • Bouchard, V., Hutchinson, J., Loliencar, P., Meiers, M., Rupert, M.: A generalized topological recursion for arbitrary ramification. Ann....
    • Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Remodeling the B-model. Comm. Math. Phys. 287(1), 117–178 (2009). arxiv:hep-th/0709.1453
    • Bouchard, V., Mariño, M.: Hurwitz numbers, matrix models and enumerative geometry. Proc. Symp. Pure Math. 78 (2007). arxiv:math.AG/0709.1458
    • Bouwknegt, P., Schoutens, K.: W-symmetry, vol. 22. World Scientific, Singapore (1995)
    • Branahl, J., Hock, A., Wulkenhaar, R.: Blobbed topological recursion of the quartic kontsevich model I: Loop equations and conjectures. Commun....
    • Brézin, E., Hikami, S.: Intersection theory from duality and replica. Commun. Math. Phys. 283, 507– 521 (2008). arxiv:hep-th/0708.2210
    • Brézin, E., Hikami, S.: The intersection numbers of the p-spin curves from random matrix theory. JHEP 02, 035 (2013). arxiv:math-ph/1212.6096
    • Charbonnier, S., Chidambaram, N.K., Garcia-Failde, E., Giacchetto, A.: Shifted Witten classes and topological recursion. Trans. Am. Math....
    • Chekhov, L., Eynard, B.: Hermitian matrix model free energy: Feynman graph technique for all genera. J. High Energy Phys., 3,014, 18, (2006)....
    • Chekhov, L., Eynard, B.: Matrix eigenvalue model: Feynman graph technique for all genera. J. High Energy Phys. (12):026, 29, (2006). arxiv:math-ph/0604014
    • Chekhov, L., Eynard, B., Orantin, N.: Free energy topological expansion for the 2-matrix model. J. High Energy Phys. 12, 053, 31, (2006)....
    • Chiodo, A.: The Witten top Chern class via K-theory. J. Algebraic Geom. 15, 681–707 (2006). arxiv:math.AG/0210398
    • Chiodo, A.: Towards an enumerative geometry of the moduli space of twisted curves and rth roots. Compos. Math. 144(6), 1461–1496 (2008). arxiv:math.AG/0607324
    • Dijkgraaf, R., Fuji, H., Manabe, M.: The volume conjecture, perturbative knot invariants, and recursion relations for topological strings....
    • Dijkgraaf, R., Verlinde, E., Verlinde, H.: Loop equations and Virasoro constraints in non-perturbative two-dimensional quantum gravity. Nucl....
    • Dunin-Barkowski, P., Kramer, R., Popolitov, A., Shadrin, S.: Loop equations and a proof of Zvonkine’s qr-ELSV formula. Annales Scientifiques...
    • Dunin-Barkowski, P., Norbury, P., Orantin, N., Popolitov, A., Shadrin, S.: Dubrovin’s superpotential as a global spectral curve. J. Inst....
    • Dunin-Barkowski, P., Orantin, N., Shadrin, S., Spitz, L.: Identification of the givental formula with the spectral curve topological recursion...
    • Ekedahl, T., Lando, S., Shapiro, M., Vainshtein, A.: Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146, 297–327...
    • Eynard, B.: Topological expansion for the 1-hermitian matrix model correlation functions. JHEP 0411, 031 (2004). arxiv:hep-th/0407261
    • Eynard, B.: Invariants of spectral curves and intersection theory of moduli spaces of complex curves. Commun. Number Theory Phys. 8, 10 (2011)....
    • Eynard, B.: Topological recursion, Airy structures in the space of cycles. (2019). arxiv:math-ph/1912.03339
    • Eynard, B., Mulase, M., Safnuk, B.: The Laplace transform of the cut-and-join equation and the Bouchard-Mariño conjecture on Hurwitz numbers....
    • Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys., 1(2), (2007). arxiv:math-ph/0702045
    • Eynard, B., Orantin, N.: Topological expansion of mixed correlations in the hermitian 2 matrix model and x −y symmetry of the Fg invariants....
    • Eynard, B., Orantin, N.: Algebraic methods in random matrices and enumerative geometry. Tropical review J. Phys. A. : Math. Theor., 42, (2009)....
    • Eynard, B., Orantin, N.: About the x-y symmetry of the Fg algebraic invariants. (2013). arxiv:math-ph/1311.4993
    • Eynard, B., Orantin, N.: Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion, a proof of the...
    • Faber, C., Shadrin, S., Zvonkine, D.: Tautological relations and the r-spin Witten conjecture. Annales scientifiques de l’École Normale Supérieure...
    • Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry and quantum singularity theory. Ann. Math. (2) 178(1), 1–106 (2013). arxiv:math.AG/0712.4021
    • Fang, B., Liu, C.-C.M., Zong, Z.: All genus mirror symmetry for toric Calabi-Yau 3-orbifolds. StringMath 2014, Proc. Symp. Pure Math. 93,...
    • Hock, A., Wulkenhaar, R.: Blobbed topological recursion of the quartic kontsevich model II: Genus= 0. Ann. Inst. H. Poincare D Comb. Phys....
    • Jenkins, A.J.: On the existence of certain general extremal metrics. Ann. Math. 66(3), 440–453 (1957)
    • Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. general...
    • Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Comm. Math. Phys. 147, 1–23 (1992)
    • Kontsevich, M., Soibelman, Y.: Airy structures and symplectic geometry of topological recursion, in Topological Recursion and its Influence...
    • Leigh, O.: The r-ELSV formula via localisation on the moduli space of stable maps with divisible ramification. (2020). arxiv:math.AG/2004.06739
    • Mochizuki, T.: The virtual class of the moduli stack of stable r-spin curves. Comm. Math. Phys. 264(1), 1–40 (2006)
    • Okounkov, A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7(4), 447–453 (2000). arxiv:math.AG/0004128
    • Polishchuk, A., Vaintrob, A.: Algebraic construction of Witten’s top Chern class. Contemporary Mathematics, Advances in algebraic geometry...
    • Polyak, M.: Feynman diagrams for pedestrians and mathematicians. Graphs Patterns Math. Theor. Phys. 73, 15–42 (2005)
    • Sato, M., Miwa, T., Jimbo, M.: Holonomic quantum fields. II–the Riemann-Hilbert problem. Publ. Res. Inst. Math. Sci. 15(1), 201–278 (1979)
    • Segal, G.,Wilson, G.: Loop groups and equations of KdV type. PublicationsMathématiques de l’Institut des Hautes Études Scientifiques 61(1),...
    • Shadrin, S., Spitz, L., Zvonkine, D.: Equivalence of ELSV and Bouchard-Mariño conjectures forr-spin Hurwitz numbers. Math. Ann. 361(3–4),...
    • Strebel, K.: On quadratic differentials with closed trajectories and second order poles. J. Anal. Math. 19(1), 373–382 (1967)
    • Tutte, W.T.: On the enumeration of planar maps. Bull. Am. Math. Soc. 74(1), 64–74 (1968)
    • Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In Brézin, E., Wadia, S.R., editors, Large N expansion in quantum...
    • Witten, E.: Algebraic geometry associated with matrix models of two-dimensional gravity. Top. Methods Mod. Math. 235–269, (1993)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno