Ir al contenido

Documat


Whittaker vectors forW-algebras from topological recursion

  • Gaëtan Borot [2] ; Vincent Bouchard [3] ; Nitin K. Chidambaram [1] ; Thomas Creutzig [3]
    1. [1] University of Edinburgh

      University of Edinburgh

      Reino Unido

    2. [2] Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,Germany
    3. [3] Department of Mathematical and Statistical Sciences, University of Alberta,Canada
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 2, 2024, 91 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00921-x
  • Enlaces
  • Resumen
    • We identify Whittaker vectors for Wk(g)-modules with partition functions of higher Airy structures. This implies that Gaiotto vectors, describing the fundamental class in the equivariant cohomology of a suitable compactification of the moduli space of G-bundles over P2 for G a complex simple Lie group, can be computed by a non-commutative version of the Chekhov–Eynard–Orantin topological recursion. We formulate the connection to higher Airy structures for Gaiotto vectors of type A, B, C, and D, and explicitly construct the topological recursion for type A (at arbitrary level) and type B (at self-dual level). On the physics side, it means that the Nekrasov partition function for pure N = 2 four-dimensional supersymmetric gauge theories can be accessed by topological recursion methods.

  • Referencias bibliográficas
    • Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197...
    • Alexandrov, A., Chapuy, G., Eynard, B., Harnad, J.: Weighted Hurwitz numbers and topological recursion: An overview. J. Math. Phys. 59(081102)...
    • Ambjørn, J., Chekhov, L.O., Makeenko, Yu.: Higher genus correlators from the Hermitian 1-matrix model. Phys. Lett. B 282, 341–348 (1992)....
    • Andersen, J.E., Borot, G., Chekhov, L.O., Orantin, N.: The ABCD of topological recursion. Adv. Math. arXiv:1703.03307 [math-ph]
    • Andersen, J.E., Borot, G., Orantin, N.: Geometric recursion (2017). arXiv:1711.04729 [math-ph]
    • Arakawa, T.: Representation theory of W-algebras. Invent. Math. 169(2), 219–320 (2007). arXiv .QA/0506056
    • Arakawa, T.: Introduction to W-algebras and their representation theory. In: Callegaro, F., Carnovale, G., Caselli, F., de Concini, C., de...
    • Arakawa, T., Creutzig, T., Feigin, B.: Urod algebras and translation of W-algebras. Forum Math. Sigma 10(E33) (2022). arXiv:2010.02427 [math.RT]
    • Arakawa, T., Creutzig, T., Linshaw, A.R.: W-algebras as coset vertex algebras. Invent. Math. 218, 145–195 (2019). arXiv:1801.03822 [math.QA]
    • Bakalov, B., Milanov, T.: W-constraints for the total descendant potential of a simple singularity. Compos. Math. 149(5), 840–888 (2013)....
    • Belliard, R., Eynard, B.: Integrability of W(sld)-symmetric Toda conformal field theories (2018). arXiv:1801.03433 [math-ph]
    • Belliard, R., Eynard, B.: From the quantum geometry of Fuchsian systems to conformal blocks of W-algebras (2019). arXiv:1907.10543 [math-ph]
    • Belliard, R., Eynard, B., Marchal, O.: Integrable differential systems of topological type and reconstruction by the topological recursion....
    • Bergère, M., Borot, G., Eynard, B.: Rational differential systems, loop equations, and application to the qth reductions of KP. Ann. Henri...
    • Bergère, M., Eynard, B., Marchal, O., Prats-Ferrer, A.: Loop equations and topological recursion for the arbitrary-β two-matrix model. JHEP...
    • Bershtein, M., Feigin, B., Litvinov, A.: Coupling of two conformal field theories and Nakajima-Yoshioka blow-up equations. Lett. Math. Phys....
    • Bonelli, G., Maruyoshi, K., Tanzini, A.: Wild quiver gauge theories. JHEP (2012). arXiv:1112.1691 [hep-th]
    • Borot, G.: Topological recursion and geometry. Rev. Math. Phys. 32(10), 2030007 (2020). arXiv:1705.09986 [math-ph]
    • Borot, G., Bouchard, V., Chidambaram, N.K., Creutzig, T., Noshchenko, D.: Higher Airy structures, W-algebras and topological recursion. Mem....
    • Borot, G., Brini, A.: Chern–Simons theory on spherical Seifert manifolds, topological strings and integrable systems. Adv. Theor. Math. Phys....
    • Borot, G., Eynard, B.: Geometry of spectral curves and all order dispersive integrable system. SIGMA 8(100) (2012). arXiv:1110.4936 [math-ph]
    • Borot, G., Eynard, B.: All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials. Quantum...
    • Borot, G., Eynard, B.: Spectral curves, root systems, and application to SU(N) Chern-Simons theory on Seifert spaces. Sel. Math. New Ser....
    • Borot, G., Eynard, B., Orantin, N.: Abstract loop equations, topological recursion, and applications. Commun. Number Theory Phys. 9(1), 51–187...
    • Borot, G., Kramer, R., Schüler, Y.: Higher Airy structures and topological recursion on singular spectral curves. Ann. Inst. Henri Poincaré...
    • Bouchard, V., Ciosmak, P., Hadasz, L., Osuga, K., Ruba, B., Sułkowski, P.: Super quantum airy structures. Commun. Math. Phys. 380, 449–552...
    • Bouchard, V., Eynard, B.: Think globally, compute locally. JHEP 02(143) (2013). arXiv:1211.2302 [math-ph]
    • Bouchard, V., Eynard, B.: Reconstructing WKB from topological recursion. J. Éc. Polytech. Math. 4, 845–908 (2017). arXiv:1606.04498 [math-ph]
    • Bouchard, V., Hutchinson, J., Loliencar, P., Meiers, M., Rupert, M.: A generalized topological recursion for arbitrary ramification. Ann....
    • Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Remodeling the B-model. Commun. Math. Phys. 287, 117–178 (2009). arXiv:0709.1453 [hep-th]
    • Bouchard, V., Mastel, K.: A new class of higher quantum Airy structures as modules of W(glr)-algebras. SciPost Phys. 14(169) (2023). arXiv:2009.13047...
    • Bouchard, V., Osuga, K.: N = 1 super topological recursion. Lett. Math. Phys. 111, 144 (2021). arXiv:2007.13186 [math-ph]
    • Braverman, A., Finkelberg, M., Nakajima, H.: Instanton moduli spaces and W-algebras. Astérisque 385 (2016). arXiv:1406.2381 [math.QA]
    • Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Topological recursion for Kadomtsev–Petviashvili tau functions of hypergeometric...
    • Chekhov, L.O., Eynard, B.: Matrix eigenvalue model: Feynman graph technique for all genera. JHEP (0612:026) (2006). arXiv /0604014
    • Chekhov, L.O., Eynard, B., Marchal, O.: Topological expansion of beta-ensemble model and quantum algebraic geometry in the sector wise approach....
    • Chuang, W., Creutzig, T., Diaconescu, D.-E., Soibelman, Y.: Hilbert schemes of nonreduced divisors in Calabi–Yau threefolds and W-algebras....
    • Creutzig, T., Genra, N., Nakatsuka, S.: Duality of subregular W-algebras and principal W-superalgebras. Adv. Math. 383, 107685 (2021). arXiv:2005.10713...
    • Creutzig, T., Linshaw, A.R.: The super W1+∞ algebra with integral central charge. Trans. Am. Math. Soc. 367(8), 5521–5551 (2015). arXiv:1209.6032...
    • Creutzig, T., Linshaw, A.R.: Cosets of affine vertex algebras inside larger structures. J. Algebra 517, 396–438 (2019). arXiv:1407.8512 [math.RT]
    • Creutzig, T., Linshaw, A.R.: Trialities of orthosymplectic W-algebras. Adv. Math. 409(Part B), 108678 (2022). arXiv:2102.10224 [math.RT]
    • Creutzig, T., Linshaw, A.R.: Trialities of w-algebras. Camb. J. Math. 10(1), 69–194 (2022). arXiv:2005.10234 [math.RT]
    • Dijkgraaf, R., Fuji, H., Manabe, M.: The volume conjecture, perturbative knot invariants, and recursion relations for topological strings....
    • Do, N., Norbury, P.: Topological recursion on the Bessel curve. Commun. Number Theory Phys. 12(1), 53–73 (2018). arXiv:1608.02781 [math-ph]
    • Dunin-Barkowski, P., Orantin, N., Shadrin, S., Spitz, L.: Identification of the Givental formula with the spectral curve topological recursion...
    • Eynard, B.: All genus correlation functions for the Hermitian 1-matrix model. JHEP (0411:031) (2004). arXiv /0407261
    • Eynard, B.: Invariants of spectral curves and intersection theory of moduli spaces of complex curves. Commun. Number Theory Phys. 8(3) (2014)....
    • Eynard, B.: An overview of topological recursion. Proc. ICM 3, 1063–1086 (2014)
    • Eynard, B.: Counting surfaces. In: Progress in Mathematics. Birkhäuser (2016)
    • Eynard, B., Garcia-Failde, E.: From topological recursion to wave functions and PDEs quantizing hyperelliptic curves. Forum Math. Sigma 11(E99)...
    • Eynard, B., Marchal, O.: Topological expansion of the Bethe ansatz, and non-commutative algebraic geometry. JHEP (0903:094) (2009). arXiv:0809.3367...
    • Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007). arXiv /0702045
    • Eynard, B., Orantin, N.: Weil–Petersson volume of moduli spaces, Mirzakhani’s recursion and matrix models (2007). arXiv:0705.3600 [math-ph]
    • Eynard, B., Orantin, N.: Topological expansion of mixed correlations in the Hermitian 2 matrix model and x−y symmetry of the Fg invariants....
    • Eynard, B., Orantin, N.: Geometrical interpretation of the topological recursion, and integrable string theories (2009). arXiv:0911.5096 [math-ph]
    • Eynard, B., Orantin, N.: Topological recursion in random matrices and enumerative geometry. J. Phys. A Math. Theor. 42(29) (2009). arXiv:0811.3531...
    • Eynard, B., Orantin, N.: Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the...
    • Fang, B., Liu, C.-C., Zong, Z.: On the remodeling conjecture for toric Calabi–Yau 3-orbifolds. J. Am. Math. Soc. 33, 135–222 (2020). arXiv:1604.07123...
    • Feigin, B., Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras. Int. J. Mod. Phys. A 7(Supplement 1A),...
    • Feigin, B., Gukov, S.: VOA[M4]. J. Math. Phys 61(1), 012302 (2020). arXiv:1806.02470 [hep-th]
    • Gaiotto, D.: Asymptotically free N = 2 theories and irregular conformal blocks. J. Phys. Conf. Ser. 462(1), 012014 (2013). arXiv:0908.0307...
    • Gaiotto, D., Rapˇcák, M.: Vertex algebras at the corner. JHEP (160) (2019). arXiv:1703.00982 [hep-th]
    • Gaiotto, D., Teschner, J.: Irregular singularities in Liouville theory and Argyres–Douglas type gauge theories I. JHEP 12, 050 (2012). arXiv:1203.1052...
    • Genra, N.: Screening operators for W-algebras. Sel. Math. New Ser. 23(3), 2157–2202 (2017). arXiv:1606.00966 [math.RT]
    • Giacchetto, A., Kramer R., Lewański, D.D.: A new spin on Hurwitz theory and ELSV via theta characteristics (2021). arXiv:2104.05697 [math.AG]
    • Iwaki, K., Marchal, O., Saenz, A.: Painlevé equations, topological type property and reconstruction by the topological recursion. J. Geom....
    • Kac, V.G., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185(2), 400–458 (2004). arXiv /0304011
    • Kanade, S., Linshaw, A.R.: Universal two-parameter even spin W∞-algebra. Adv. Math. 355, 106774 (2019). arXiv:1805.11031 [math.RT]
    • Keller, C.A., Mekareeya, N., Song, J., Tachikawa, Y.: The ABCDEFG of instantons and W-algebras. JHEP 45, 2012 (2012). arXiv:1111.5624 [hep-th]
    • Kontsevich, M., Soibelman, Y.: Airy structures and symplectic geometry of topological recursion. In: Proceedings of Symposia in Pure Mathematics,...
    • Kostov, I., Orantin, N.: CFT and topological recursion. JHEP (56) (2010). arXiv:1006.2028 [hep-th]
    • Lewański, D.: Moduli Spaces of Curves and Enumerative Geometry via Topological Recursion. University of Amsterdam (2017)
    • Li, H.: Vertex algebras and vertex Poisson algebras. Commun. Contemp. Math. 6(1), 61–110 (2004). arXiv .QA/0209310
    • Linshaw, A.R.: Universal two-parameter W∞-algebra and vertex algebras of type W(2, 3,..., N). Compos. Math. 157, 12–82 (2021). arXiv:1710.02275...
    • Marchal, O., Orantin, N.: Quantization of hyperelliptic curves from isomonodromic systems and topological recursion. J. Geom. Phys. 171, 104407...
    • Marshakov, A.: Seiberg–Witten Theory and Integrable Systems. World Scientific (1999). arXiv /9903252
    • Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology. Astérisque 408 (2019). arXiv:1211.1287 [math.AG]
    • Milanov, T.: W-algebra constraints and topological recursion for AN-singularity (with an Appendix by Danilo Lewanski). Int. J. Math. 27(1650110)...
    • Mulase, M., Dumitrescu, O.: Quantization of spectral curves for meromorphic Higgs bundles through topological recursion. In: Liu, C.C.M.,...
    • Nagatomo, K., Tsuchiya, A.: Conformal field theories associated to regular chiral vertex operator algebras, I. Theories over the projective...
    • Nakajima, H., Yoshioka, K.: Instanton counting on blowup I. Invent. Math. 162, 313–355 (2005). arXiv /0306198
    • Nishinaka, T., Uetoko, T.: Argyres–Douglas theories and Liouville irregular states. JHEP 09, 104 (2019). arXiv:1905.03795 [hep-th]
    • Norbury, P.: A new cohomology class on the moduli space of curves. Geom. Topol. 27, 2695–2761 (2023). arXiv:1712.03662 [math.AG]
    • Norbury, P., Scott, N.: Gromov–Witten invariants of P1 and Eynard–Orantin invariants. Geom. Topol. 18, 1865–1910 (2014). arXiv:1106.1337 [math.AG]
    • Osuga, K.: Super topological recursion and Gaiotto vectors for superconformal blocks. Lett. Math. Phys. 112, 48 (2022). arXiv:2107.04588 [math-ph]
    • Rapčák, M., Soibelman, Y., Yang, Y., Zhao, G.: Cohomological Hall algebras, vertex algebras and instantons. Commun. Math. Phys. 376(3), 1803–1873...
    • Schiffmann, O., Vasserot, E.: Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A2. Publ....
    • Xie, D.: General Argyres–Douglas theory. JHEP (100) (2013). arXiv:1204.2270 [hep-th]
    • Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9(1), 237–302 (1996)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno