Ir al contenido

Documat


Spatial Process Models for Social Network Analysis

  • Juan Sosa [1] ; Jesús David Solano Velásquez [1]
    1. [1] Universidad Nacional de Colombia

      Universidad Nacional de Colombia

      Colombia

  • Localización: Comunicaciones en Estadística, ISSN 2027-3355, ISSN-e 2339-3076, Vol. 18, Nº. 1, 2025, págs. 87-101
  • Idioma: inglés
  • Títulos paralelos:
    • Modelos de Procesos Espaciales para el Análisis de Redes Sociales
  • Enlaces
  • Resumen
    • español

      El modelado estadístico de redes nos permite caracterizar completamente todo el sistema, así como realizar predicciones sobre la formación de enlaces. Los modelos latentes abordan estas tareas incorporando dependencias no condicionales a través de efectos aleatorios. Un ejemplo notable es el modelo Bayesiano basado en procesos espaciales, que resulta particularmente útil para evitar problemas de sobreajuste que pueden surgir en modelos de espacio de distancia latente. En este trabajo, presentamos la implementación computacional del modelo y evaluamos su bondad de ajuste y desempeño predictivo utilizando redes sintéticas y reales. El modelo demuestra fuertes capacidades para replicar estadísticas de la red y estimar la superficie latente correspondiente. También proponemos un enfoque alternativo de ajuste utilizando un algoritmo de caso-control. Con base en la verosimilitud estimada, el modelo muestra un buen desempeño tanto en términos de predicción como en bondad de ajuste.

    • English

      Statistical modeling of networks enables us to fully characterize the entire system as well as make predictions regarding link formation. Latent models address these tasks by incorporating non-conditional dependencies through random effects. A notable example is the Bayesian spatial process-based model, which is particularly useful for avoiding overfitting issues that may arise in latent distance space models. In this paper, we provide the computational implementation of the model andevaluate its goodness of fit and predictive performance using synthetic networks.The model demonstrates strong capabilities in replicating network statistics andestimating the corresponding latent surface. We also propose an alternative fitting approach using a case-control algorithm. Based on the estimated log-likelihood, the model exhibits good performance in terms of prediction as well as goodness of fit.

  • Referencias bibliográficas
    • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.
    • Bender, E. A., & Canfield, E. R. (1978). The asymptotic number of labeled graphs with given degree sequences. Journal of Combinatorial...
    • Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical...
    • Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1),...
    • Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistician, 49(4), 327–335.
    • Ciminelli, J. T., Love, T., & Wu, T. T. (2019). Social network spatial model. Spatial Statistics, 29, 129–144.
    • Durant, D., Dunson, D. B., et al. (2018). Bayesian inference and testing of group differences in brain networks. Bayesian Analysis, 13(1),...
    • Erdős, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae, 6, 290–297.
    • Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei,...
    • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.
    • Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association, 81(395), 832–842.
    • Gamerman, D., & López, J. M. (2006). Markov Chain Monte Carlo: Stochastic simulation for Bayesian inference. CRC Press.
    • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Chapman...
    • Gilbert, E. N. (1959). Random graphs. The Annals of Mathematical Statistics, 30(4), 1141–1144.
    • Gonçalves, L., Subtil, A., Oliveira, M. R., & de Zea Bermudez, P. (2014). ROC curve estimation: An overview. REVSTAT–Statistical Journal,...
    • Handcock, M. S., & Krivitsky, P. N. (2008). Fitting latent cluster models for networks with latentnet. Journal of Statistical Software,...
    • Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association, 100(469), 286–295.
    • Hoff, P. D. (2009). Multiplicative latent factor models for description and prediction of social networks. Computational and Mathematical...
    • Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical...
    • Holland, P. W., & Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. Journal of the American...
    • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023). An introduction to statistical learning with applications in Python. Springer....
    • Kim, B. (2018). Latent modeling of dynamic social networks [Doctoral dissertation, The Pennsylvania State University].
    • Kolaczyk, E. D., & Csárdi, G. (2020). Statistical analysis of network data with R (2nd ed.). Springer.
    • Linkletter, C. D. (2007). Spatial process models for social network analysis [Doctoral dissertation, Citeseer].
    • Minhas, S., Hoff, P. D., & Ward, M. D. (2019). Inferential approaches for network analysis: AMEN for latent factor models. Political Analysis,...
    • Padgett, J. F., & Ansell, C. K. (1993). Robust action and the rise of the Medici, 1400–1434. American Journal of Sociology, 98(6), 1259–1319.
    • Raftery, A. E., Niu, X., Hoff, P. D., & Yeung, K. Y. (2012). Fast inference for the latent space network model using a case-control approximate...
    • Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT Press. https://doi.org/10.7551/mitpress/3206.001.0001
    • Salter-Townshend, M., & McCormick, T. H. (2017). Latent space models for multiview network data. The Annals of Applied Statistics, 11(3),...
    • Sampson, S. F. (1968). A novitiate in a period of change: An experimental and case study of social relationships. Cornell University.
    • Schweinberger, M., & Snijders, T. A. B. (2003). Settings in social networks: A measurement model. Sociological Methodology, 33(1), 307–341.
    • Sewell, D. K. (2019). Latent space models for network perception data. Network Science, 7(2), 160–179.
    • Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512),...
    • Sosa, J., & Betancourt, B. (2022). A latent space model for multilayer network data. Computational Statistics & Data Analysis, 107432.
    • Sosa, J., & Buitrago, L. (2020). A review of latent space models for social networks. arXiv preprint arXiv:2012.02307.
    • Sosa, J., & Buitrago, L. (2021). A review of latent space models for social networks. Revista Colombiana de Estadística, 44(1), 171–200.
    • Sosa, J., & Rodríguez, A. (2017). A latent space model for cognitive social structures data. arXiv preprint arXiv:1711.03662.
    • Sosa, J., & Rodríguez, A. (2018). A record linkage model incorporating relational data. arXiv preprint arXiv:1808.04511.
    • Sosa, J., & Rodríguez, A. (2019). A Bayesian approach for de-duplication in the presence of relational data. arXiv preprint arXiv:1909.06519.
    • Sosa, J., & Rodríguez, A. (2021). A latent space model for cognitive social structures data. Social Networks, 65, 85–97.
    • Wang, L., Zhang, Z., Dunson, D., et al. (2019). Common and individual structure of brain networks. The Annals of Applied Statistics, 13(1),...
    • Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks: I. An introduction to Markov graphs....
    • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.
    • Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4), 452–473.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno