Ir al contenido

Documat


A Review of Latent Space Models for Social Networks

  • Autores: Juan Sosa, Lina Buitrago
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 44, Nº. 1, 2021, págs. 171-200
  • Idioma: inglés
  • DOI: 10.15446/rce.v44n1.89369
  • Títulos paralelos:
    • Una revisión de modelos de espacio latente para redes sociales
  • Enlaces
  • Resumen
    • español

      Resumen En este artículo, proporcionamos una revisión sobre los fundamentos de redes sociales y el modelamiento de espacio latente. La primera trata temas importantes relacionados con la descripción de la red, incluidas las características de los vértices y la estructura de la red; mientras que la segunda articula avances relevantes en el modelado de redes, incluidos modelos de grafos aleatorios, modelos de grafos aleatorios generalizados, modelos de grafos aleatorios exponenciales y modelos de espacio social. Discutimos en detalle varios modelos de espacio latente proporcionados en la literatura, prestando especial atención a los modelos de distancia, clase y eigen, en el contexto de redes binarias no dirigidas. Además, también examinamos empíricamente el comportamiento de estos modelos en términos de predicción y bondad de ajuste utilizando más de veinte conjuntos de datos populares de la literatura de redes.

    • English

      Abstract In this paper, we provide a review on both fundamentals of social networks and latent space modeling. The former discusses important topics related to network description, including vertex characteristics and network structure; whereas the latter articulates relevant advances in network modeling, including random graph models, generalized random graph models, exponential random graph models, and social space models. We discuss in detail several latent space models provided in literature, providing special attention to distance, class, and eigen models in the context of undirected, binary networks. In addition, we also examine empirically the behavior of these models in terms of prediction and goodness-of-fit using more than twenty popular datasets of the network literature.

  • Referencias bibliográficas
    • Airoldi, E. M.,Blei, D. M.,Fienberg, S. E.,Xing, E. P. (2009). Mixed membership stochastic blockmodels. Advances in Neural Information Processing...
    • Albert, J. H.,Chib, S. (1993). ‘Bayesian analysis of binary and polychotomous response data’. Journal of the American Statistical Association....
    • Aldous, D. J. (1985). Exchangeability and related topics. Springer.
    • Barabási, A.-L.,Albert, R. (1999). ‘Emergence of scaling in random networks’. Science. 286. 509
    • Bender, E. A.,Canfield, E. R. (1978). ‘The asymptotic number of labeled graphs with given degree sequences’. Journal of Combinatorial Theory,...
    • Bollobás, B. (1998). Random graphs,. Springer.
    • Borg, I.,Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications. Springer Science & Business Media.
    • Chung, F.,Lu, L. (2006). Complex graphs and networks. American Mathematical society Providence.
    • Crane, H. (2018). Probabilistic foundations of statistical network analysis. CRC Press.
    • Durante, D.,Dunson, D. B.. (2018). ‘Bayesian inference and testing of group differences in brain networks’. Bayesian Analysis. 13. 29-58
    • Erdös, P.,Rényi, A. (1959). ‘On random graphs’. Publicationes Mathematicae. 6. 5
    • Erdös, P.,Rényi, A. (1960). ‘On the evolution of random graphs’. Publ. Math. Inst. Hung. Acad. Sci. 5. 17-61
    • Erdös, P.,Rényi, A. (1961). ‘On the strength of connectedness of a random graph’. Acta Mathematica Hungarica. 12. 261
    • Fortunato, S. (2010). ‘Community detection in graphs’. Physics reports. 486. 75-174
    • Frank, O.,Strauss, D. (1986). ‘Markov graphs’. Journal of the American Statistical Association. 81. 832
    • Gamerman, D.,Lopes, H. F. (2006). Markov chain Monte Carlo: stochastic simulation for Bayesian inference. CRC Press.
    • Gelman, A.,Hwang, J.,Vehtari, A. (2014). ‘Understanding predictive information criteria for Bayesian models’. Statistics and Computing. 24....
    • Gelman, A.,Rubin, D. (1992). Inferences from iterative simulation using multiple sequences’. Science. 7. 457
    • Gilbert, E. (1959). ‘Random graphs’. The Annals of Mathematical Statistics. 1141
    • Goldenberg, A.,Zheng, A.,Fienberg, S.,Airoldi, E. (2010). ‘A survey of statistical network models’. Foundations and Trends in Machine Learning....
    • Green, P. J.,Hastie, D. I. (2009). ‘Reversible jump MCMC’. Genetics. 155. 1391
    • Guhaniyogi, R.,Rodriguez, A. (2020). Joint modeling of longitudinal relational data and exogenous variables’. Bayesian Analysis.
    • Han, Q.,Xu, K.,Airoldi, E. (2015). Consistent estimation of dynamic and multi-layer block models. International Conference on Machine Learning’....
    • Handcock, M. S.,Raftery, A. E.,Tantrum, J. M. (2007). Model-based clustering for social networks’. Journal of the Royal Statistical Society:...
    • Handcock, M. S.,Robins, G.,Snijders, T.,Moody, J.,Besag, J. (2003). Assessing degeneracy in statistical models of social networks. Technical...
    • Hoff, P. D. (2005). ‘Bilinear mixed-effects models for dyadic data’. Journal of the American Statistical Association. 100.
    • Hoff, P. D. (2008). Modeling homophily and stochastic equivalence in symmetric relational data. Advances in Neural Information Processing Systems....
    • Hoff, P. D. (2009). ‘Multiplicative latent factor models for description and prediction of social networks’. Computational and Mathematical...
    • Hoff, P. D. (2015). ‘Multilinear tensor regression for longitudinal relational data’. The Annals of Applied Statistics. 9. 1169
    • Hoff, P. D.,Raftery, A. E.,Handcock, M. S. (2002). ‘Latent space approaches to social network analysis’. Journal of the American Statistical...
    • Hoover, D. N. (1982). ‘Row-column exchangeability and a generalized model for probability’. Exchangeability in probability and statistics...
    • Ishwaran, H.,Zarepour, M. (2000). ‘Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models’....
    • Kemp, C.,Tenenbaum, J. B.,Griffiths, T. L.,Yamada, T.,Ueda, N. (2006). Learning systems of concepts with an infinite relational model. AAAI....
    • Kim, B.,Lee, K. H.,Xue, L.,Niu, X. (2018). ‘A review of dynamic network models with latent variables’. Statistics surveys. 12. 105
    • Kolaczyk, E. D. (2009). Statistical Analysis of Network Data: Methods and Models. Springer Series in Statistics, Springer.
    • Kolaczyk, E. D.,Csárdi, G. (2020). Statistical analysis of network data with R. 2. Springer.
    • Krivitsky, P. N.,Handcock, M. S. (2008). ‘Fitting latent cluster models for networks with latentnet’. Journal of Statistical Software. 24.
    • Krivitsky, P. N.,Handcock, M. S.,Raftery, A. E.,Hoff, P. D. (2009). ‘Representing degree distributions, clustering, and homophily in social...
    • Lau, J. W.,Green, P. J. (2007). ‘Bayesian model-based clustering procedures’. Journal of Computational and Graphical Statistics. 16. 526
    • Li, W.-J.,Yeung, D.-Y.,Zhang, Z. (2011). Generalized latent factor models for social network analysis. 22International Joint Conference on...
    • Linkletter, C. D. (2007). Spatial process models for social network analysis. Simon Fraser University.
    • Lusher, D.,Koskinen, J.,Robins, G. (2012). Exponential random graph models for social networks: Theory, methods, and applications. Cambridge...
    • Minhas, S.,Hoff, P. D.,Ward, M. D. (2019). Inferential approaches for network analysis: Amen for latent factor models’. Political Analysis....
    • Newman, M. (2010). Networks: An Introduction. Oxford University Press.
    • Newman, M.,Watts, D. J. (1999). ‘Scaling and percolation in the small-world network model’. Physical Review E. 60. 7332
    • Nowicki, K.,Snijders, T. (2001). ‘Estimation and prediction for stochastic blockstructures’. Journal of the American Statistical Association....
    • Paez, M. S.,Amini, A. A.,Lin, L. (2019). ‘Hierarchical stochastic block model for community detection in multiplex networks’. arXiv preprint....
    • Polson, N. G.,Scott, J. G.,Windle, J. (2013). ‘Bayesian inference for logistic models using Pólya-Gamma latent variables’. Journal of the...
    • Raftery, A. E. (2017). ‘Comment: Extending the latent position model for networks’. Journal of the American Statistical Association. 112....
    • Raftery, A. E.,Niu, X.,Hoff, P. D.,Yeung, K. Y. (2012). ‘Fast inference for the latent space network model using a case-control approximate...
    • Raftery, A. E.,Niu, X.,Hoff, P. D.,Yeung, K. Y. (2012). ‘Fast inference for the latent space network model using a case-control approximate...
    • Rastelli, R.,Friel, N.,Raftery, A. E. (2015). Properties of latent variable network models’. arXiv preprint.
    • Regueiro Martinez, P. (2017). Scalable, Hierarchical and Dynamic Modeling of Communities in Networks. UC Santa Cruz.
    • Robins, G.,Pattison, P.,Kalish, Y.,Lusher, D. (2007). ‘An introduction to exponential random graph p* models for social networks’. Social...
    • Salter-Townshend, M.,McCormick, T. H. (2017). ‘Latent space models for multiview network data’. The Annals of Applied Statistics. 11. 1217
    • Salter-Townshend, M.,Murphy, T. B. (2013). ‘Variational bayesian inference for the latent position cluster model for network data’. Computational...
    • Schweinberger, M.,Snijders, T. (2003). ‘Settings in social networks: A measurement model’. Sociological Methodology. 33. 307
    • Scott, J. (2000). Social network analysis: A handbook. 2. SAGE Publications.
    • Sewell, D. K.,Chen, Y. (2015). ‘Latent space models for dynamic networks’. Journal of the American Statistical Association. 110. 1646
    • Snijders, T. (2002). ‘Markov chain monte carlo estimation of exponential random graph models’. Journal of Social Structure. 3. 1-40
    • Snijders, T. (2011). ‘Statistical models for social networks’. Annual Review of Sociology. 37. 131
    • Sosa, J.,Rodriguez, A. (2017). ‘A latent space model for cognitive social structures data’. arXiv preprint.
    • Sosa, J.,Rodriguez, A. (2018). ‘A record linkage model incorporating relational data’. arXiv preprint.
    • Sosa, J.,Rodriguez, A. (2019). ‘A bayesian approach for de-duplication in the presence of relational data’. arXiv preprint.
    • Spiegelhalter, D. J.,Best, N. G.,Carlin, B. P.,Linde, A. (2014). ‘The deviance information criterion: 12 years on’. Journal of the Royal Statistical...
    • Spiegelhalter, D. J.,Best, N. G.,Carlin, B. P.,Van Der Linde, A. (2002). ‘Bayesian measures of model complexity and fit’. Journal of the Royal...
    • Sweet, T. M.,Thomas, A. C.,Junker, B. W. (2013). ‘Hierarchical network models for education research: Hierarchical latent space models’. Journal...
    • Wang, L.,Zhang, Z.,Dunson, D. (2019). ‘Common and individual structure of brain networks’. The Annals of Applied Statistics. 13. 85-112
    • Wasserman, S.,Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press.
    • Wasserman, S.,Pattison, P. (1996). ‘Logit models and logistic regressions for social networks:I. an introduction to markov graphs and p*’....
    • Watanabe, S. (2010). ‘Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory’....
    • Watanabe, S. (2013). ‘A widely applicable Bayesian information criterion’. Journal of Machine Learning Research. 14. 867
    • Watts, D. J.,Strogatz, S. H. (1998). ‘Collective dynamics of small-world networks’. Nature. 393. 440
    • Xu, Z.,Tresp, V.,Yu, K.,Kriegel, H. P. (2006). Learning infinite hidden relational models. Uncertainity in Artificial Intelligence (UAI2006).
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno