Ir al contenido

Documat


On a regularity-conjecture of generalized binomial edge ideals

  • Anuvinda, J. [1] ; Mehta, Ranjana [1] ; Saha, Kamalesh [2]
    1. [1] SRM University

      SRM University

      India

    2. [2] Chennai Mathematical Institute

      Chennai Mathematical Institute

      India

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 3, 2025, págs. 685-693
  • Idioma: inglés
  • DOI: 10.1007/s13348-024-00452-w
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we prove the upper bound conjecture proposed by Saeedi Madani and Kiani on the Castelnuovo–Mumford regularity of generalized binomial edge ideals. We give a combinatorial upper bound of regularity for generalized binomial edge ideals, which is better than the bound claimed in that conjecture. Also, we show that the bound is tight by providing an infinite class of graphs.

  • Referencias bibliográficas
    • Amata, L., Crupi, M., Rinaldo, G.: Cohen-Macaulay generalized binomial edge ideals, pp. 1–11. Preprint at arXiv:2112.15136 (2021)
    • Baskoroputro, H., Ene, V., Ion, C.: Koszul binomial edge ideals of pairs of graphs. J. Algebra 515, 344–359 (2018)
    • Bruns, W., Conca, A.: Gröbner bases and determinantal ideals. NATO Sci. Ser. II Math. Phys. Chem. 115, 9–66 (2003)
    • Chaudhry, F., Irfan, R.: On the generalized binomial edge ideals of generalized block graphs. Math. Rep. 22(72)(3–4), 381–394 (2020)
    • Diaconis, P., Eisenbud, D., Sturmfels, B.: Lattice walks and primary decomposition. Progr. Math. 161, 173–193 (1998)
    • Ene, V., et al.: The binomial edge ideal of a pair of graphs. Nagoya Math. J. 213, 105–125 (2014)
    • Ene, V., Herzog, J., Hibi, T.: Cohen–Macaulay binomial edge ideals. Nagoya Math. J. 204, 57–68 (2011)
    • Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
    • Herzog, J., et al.: Binomial edge ideals and conditional independence statements. Adv. Appl. Math. 45(3), 317–333 (2010)
    • Hoşten, S., Shapiro, J.: Primary decomposition of lattice basis ideals. J. Symbolic Comput. 29(4–5), 625–639 (2000). (Symbolic computation...
    • Hoşten, S., Sullivant, S.: Ideals of adjacent minors. J. Algebra 277(2), 615–642 (2004)
    • Jayanthan, A.V., Narayanan, N., Raghavendra Rao, B.V.: Regularity of binomial edge ideals of certain block graphs. In: Proceedings of the...
    • Kumar, A.: Regularity bound of generalized binomial edge ideal of graphs. J. Algebra 546, 357–369 (2020)
    • Malayeri, M.R., Madani, S.S., Kiani, D.: A proof for a conjecture on the regularity of binomial edge ideals. J. Combin. Theory Ser. A 180,...
    • Ohtani, M.: Graphs and ideals generated by some 2-minors. Commun. Algebra 39(3), 905–917 (2011)
    • Rauh, J.: Generalized binomial edge ideals. Adv. Appl. Math. 50(3), 409–414 (2013)
    • Rauh, J., Nihat, A.: Robustness, canalyzing functions and systems design. Theory Biosci. 133, 63–78 (2014)
    • Saeedi Madani, S.: Binomial edge ideals: a survey. In: Multigraded algebra and applications. Springer Proceedings in Mathematics & Statistics,...
    • Saeedi Madani, S., Kiani, D.: On the binomial edge ideal of a pair of graphs. Electron. J. Combin. 20(1), 48 (2013)
    • Shen, Y.-H., Zhu, G.: Generalized binomial edge ideals of bipartite graphs, pp. 1–31. Preprint at arXiv:2305.05365 (2023)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno