Ir al contenido

Documat


Regularity of binomial edge ideals of chordal graphs

  • Rouzbahani Malayeri, Mohammad [1] ; Saeedi Madani, Sara [1] ; Kiani, Dariush [1]
    1. [1] Amirkabir University of Technology

      Amirkabir University of Technology

      Irán

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 72, Fasc. 2, 2021, págs. 411-422
  • Idioma: inglés
  • DOI: 10.1007/s13348-020-00293-3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we prove the conjectured upper bound for Castelnuovo–Mumford regularity of binomial edge ideals posed in [23], in the case of chordal graphs. Indeed, we show that the regularity of any chordal graph G is bounded above by the number of maximal cliques of G, denoted by c(G). Moreover, we classify all chordal graphs G for which \mathcal {L}(G)=c(G), where \mathcal {L}(G) is the sum of the lengths of longest induced paths of connected components of G. We call such graphs strong interval graphs. We show that the regularity of a strong interval graph G coincides with \mathcal {L}(G) as well as c(G).

  • Referencias bibliográficas
    • Berry, A., Golumbic, M.C., Lipshteyn, M.: Recognizing chordal probe graphs and cycle-bicolorable graphs. SIAM J. Discrete Math. 21(3), 573–591...
    • Chandran, L.S., Ibarra, L., Ruskey, F., Sawada, J.: Generating and characterizing the perfect elimination ordering of a chordal graph. Theor....
    • Chaudhry, F., Dokuyucu, A., Irfan, R.: On the binomial edge ideals of block graphs. An. St. Univ. Ovidius Constanta 24(2), 149–158 (2016)
    • Choudum, S.A., Karthick, T.: Maximal cliques in \{P_{2} \cup P_{3}, C_{4}\}-free graphs. Discrete Math. 310, 3398–3403 (2010)
    • Ene, V., Herzog, J., Hibi, T.: Cohen–Macaulay binomial edge ideals. Nagoya Math. J. 204, 57–68 (2011)
    • Ene, V., Zarojanu, A.: On the regularity of binomial edge ideals. Math. Nachr. 288(1), 19–24 (2015)
    • Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu.Macaulay2/
    • Herzog, J., Hibi, T., Hreinsdóttir, F., Kahle, T., Rauh, J.: Binomial edge ideals and conditional independence statements. Adv. Appl. Math....
    • Hibi, T., Matsuda, K.: Regularity and h-polynomials of binomial edge ideals (2018). arXiv:1808.06984v1
    • Hoàng, C.T., Hougardy, S., Maffray, F., Mahadev, N.V.R.: On simplicial and co-simplicial vertices in graphs. Discrete Appl. Math. 138, 117–132...
    • Jacques, S., Katzman, M.: The Betti numbers of forests (2005). arXiv:0501226v2
    • Jayanthan, A.V., Kumar, A.: Regularity of binomial edge ideals of Cohen–Macaulay bipartite graphs. Commun. Algebra 47, 4797–4805 (2019)
    • Kiani, D., Saeedi Madani, S.: The regularity of binomial edge ideals of graphs. AUT J. Math. Com. (2020, to appear)
    • Kiani, D., Saeedi Madani, S.: Some Cohen–Macaulay and unmixed binomial edge ideals. Commun. Algebra 43, 5434–5453 (2015)
    • Kiani, D., Saeedi Madani, S.: The Castelnuovo–Mumford regularity of binomial edge ideals. J. Comb. Theory Ser. A 139, 80–86 (2016)
    • Kumar, A., Sarkar, R.: Hilbert series of binomial edge ideals. Commun. Algebra 47, 3830–3841 (2019)
    • Matsuda, K., Murai, S.: Regularity bounds for binomial edge ideals. J. Commutative Algebra 5(1), 141–149 (2013)
    • Ohtani, M.: Graphs and ideals generated by some 2-minors. Commun. Algebra 39, 905–917 (2011)
    • Peeva, I.: Graded Syzygies. Springer, Berlin (2010)
    • Rauf, A., Rinaldo, G.: Construction of Cohen–Macaulay binomial edge ideals. Commun. Algebra. 42, 238–252 (2014)
    • Saeedi Madani, S.: Binomial edge ideals: a survey. In: Ene, V., Miller, E. (eds.) Multigraded Algebra and Applications, NSA, Springer Proceedings...
    • Saeedi Madani, S., Kiani, D.: Binomial edge ideals of graphs. Electron. J. Comb. 19(2), 44 (2012)
    • Saeedi Madani, S., Kiani, D.: On the binomial edge ideal of a pair of graphs. Electron. J. Comb. 20(1), 48 (2013)
    • Saeedi Madani, S., Kiani, D.: Binomial edge ideals of regularity 3. J. Algebra 515, 157–172 (2018)
    • Villarreal, R.H.: Monomial Algebras, Monographs and Research Notes in Mathematics, 2nd edn. Chapman and Hall, London (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno