Ir al contenido

Documat


Gaussian maps for singular curves on Enriques surfaces

  • Faro, Dario [1]
    1. [1] University of Pavia

      University of Pavia

      Pavía, Italia

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 3, 2025, págs. 493-513
  • Idioma: inglés
  • DOI: 10.1007/s13348-024-00442-y
  • Enlaces
  • Resumen
    • A marked Prym curve is a triple (C,\alpha ,T_d) where C is a smooth algebraic curve, \alpha is a 2-torsion line bundle on C, and T_d is a divisor of degree d. We give obstructions—in terms of Gaussian maps—for a marked Prym curve (C,\alpha ,T_d) to admit a singular model lying on an Enriques surface with only one ordinary singular point of multiplicity d, such that T_d is the pull-back of the singular point by the normalization map. More precisely, let (S, H) be a polarized Enriques surface and let (C, f) be a smooth curve together with a morphism f:C \rightarrow S birational onto its image and such that f(C) \in |H|, f(C) has exactly one ordinary singular point of multiplicity d. Let \alpha =f^*\omega _S and T_d be the divisor over the singular point of f(C). We show that if H is sufficiently positive then certain natural Gaussian maps on C, associated with \omega _C, \alpha, and T_d are not surjective. On the contrary, we show that for the general triple in the moduli space of marked Prym curves (C,\alpha ,T_d), the same Gaussian maps are surjective.

  • Referencias bibliográficas
    • Arbarello, E., Bruno, A., Sernesi, E.: On hyperplane sections of K3 surfaces. Algebr. Geom. 4(5), 562–596 (2017)
    • Bertram, A., Ein, L., Lazarsfeld, R.: Surjectivity of Gaussian maps for line bundles of large degree on curves. In: Bloch, S., Dolgachev,...
    • Ballico, E., Ciliberto, C.: On Gaussian maps for projective varieties. In: Lanteri, A., Palleschi, M., Struppa, D.C., Geometry of Complex...
    • Ballico, E., Fontanari, C.: On the surjectivity of higher Gaussian maps for complete intersection curves. Ricerche Mat. 53(1), 79–85 (2004)
    • Barchielli, C., Frediani, P.: On the first Gaussian map for Prym-canonical line bundles. Geom. Dedic. 170, 289–302 (2014)
    • Beauville, A., Mérindol, J.: Sections hyperplanes des surfaces K3(French)[Hyperplane sections of K3 surfaces]. Duke Math. J. 55(4), 873–878...
    • Calabri, A., Ciliberto, C., Miranda, R.: The rank of the second Gaussian map for general curves. Michigan Math. J. 60(3), 545–559 (2011)
    • Ciliberto, C., Dedieu, T.: Extensions of curves with high degree with respect to the genus. arXiv:2304.01851 [math.AG].
    • Ciliberto, C., Dedieu, T., Sernesi, E.: Wahl maps and extensions of canonical curves and K3 surfaces. J. Reine Angew. Math. 761, 219–245 (2020)
    • Ciliberto, C., Lopez, A.: On the number of moduli of extendable canonical curves. Nagoya Math. J. 167, 101–115 (2002)
    • Ciliberto, C., Miranda, R.: On the Gaussian map for canonical curves of low genus. Duke Math. J. 61(2), 417–443 (1990)
    • Ciliberto, C., Miranda, R.: Gaussian maps for certain families of canonical curves. In: Ellingsrud, G., Peskine, C., Sacchiero, G., Strømm,...
    • Ciliberto, C., Verra, A.: On the surjectivity of the Gaussian map for Prym-canonical line bundles on a general curve. In: Lanteri, A., Palleschi,...
    • Colombo, E., Frediani, P.: On the second Gaussian map for curves on a K3 surface. Nagoya Math. J. 199, 123–136 (2010)
    • Colombo, E., Frediani, P.: Prym map and second Gaussian map for Prym-canonical line bundles. Adv. Math. 239, 47–71 (2013)
    • Colombo, E., Frediani, P.: Siegel metric and curvature of the moduli space of curves. Trans. Am. Math. Soc. 362(3), 1231–1246 (2010)
    • Colombo, E., Frediani, P.: Some results on the second Gaussian map for curves. Michigan Math. J. 58(3), 745–758 (2009)
    • Colombo, E., Frediani, P., Pareschi, G.: Hyperplane sections of abelian surfaces. J. Algebraic Geom. 21(1), 183–200 (2012)
    • Colombo, E., Pirola, G., Tortora, A.: Hodge-Gaussian maps. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30(1), 125–146 (2001)
    • Cossec, F., Dolgachev, I., Liedtke, C.: Enriques Surfaces I. With Appendix by S. Kondo, Enriques Surfaces 1
    • Duflot, J., Miranda, R.: The Gaussian map for rational ruled surfaces. Trans. Am. Math. Soc. 330(1), 447–459 (1992)
    • Faro, D., Spelta, I.: Gauss-Prym maps on Enriques surfaces. Math. Nachr. 296(9), 4454–4462 (2023)
    • Frediani, P.: Second fundamental form and higher Gaussian maps. arXiv:2208.14794. To appear in Perspectives on four decades of Algebraic Geometry...
    • Fujita, T.: On the hyperplane section principle of Lefschetz. J. Math. Soc. Jpn. 32(1), 153–169 (1980)
    • Galati, C., Knutsen, A.L.: Rational curves and Seshadri constants on Enriques surfaces. arXiv:2212.08191 [math.AG].
    • Kemeny, M.: The moduli of singular curves on K3 surfaces. J. Math. Pures Appl. (9) 104(5), 882–920 (2015)
    • Knutsen, A.L.: On moduli spaces of polarized Enriques surfaces. J. Math. Pures Appl. (9) 144, 106–136 (2020)
    • Knutsen, A.L., Lopez, A.F.: Brill-Noether theory of curves on Enriques surfaces. I. The positive cone and gonality. Math. Z. 261(3), 659–690...
    • Knutsen, A.L., Lopez, A.F., Muñoz, R.: On the extendability of projective surfaces and a genus bound for Enriques–Fano threefolds. J. Differ....
    • Knutsen, A.L., Lopez, A.F.: Surjectivity of Gaussian maps for curves on Enriques surfaces. Adv. Geom. 7(2), 215–247 (2007)
    • L’vovsky, S.: Extensions of projective varieties and deformations. I, II. Michigan Math. J. 39(1), 41-51, 65–70 (1992)
    • Lopez, A.F.: On the extendability of projective varieties: a survey. In: Dedieu, T., Flamini, F., Fontanari, C., Galati, C., Pardini, R. (eds.)...
    • Fontanari, C., Sernesi, E.: Non-surjective Gaussian maps for singular curves on K3 surfaces. Collect. Math. 70(1), 107–115 (2019)
    • Harui, T.: The gonality and the Clifford index of curves on an elliptic ruled surface. Arch. Math. (Basel) 84(2), 131–147 (2005)
    • Lazarsfeld, R.: A sampling of vector bundle techniques in the study of linear series. In: Cornalba, M., Gómez-Mont, X., Verjovsky, A. (eds.)...
    • Lazarsfeld, R.: Positivity in algebraic geometry. I. Classical setting: line bundles and linear series Ergeb. Math. Grenzgeb. (3), 48[Results...
    • Ríos Ortiz, Á. D.: Higher Gaussian Maps on K3 Surfaces, International Mathematics Research Notices, (2023);, rnad165
    • Wahl, J.: Introduction to Gaussian maps on an algebraic curve. In G. Ellingsrud, C. Peskine, G. Sacchiero, S. Stromme (Eds.). Complex Projective...
    • Wahl, J.: Gaussian maps on algebraic curves. J. Differ. Geom. 32(1), 77–98 (1990)
    • Wahl, J.: The Jacobian algebra of a graded Gorenstein singularity. Duke Math. J. 55(4), 843–871 (1987)
    • Reider, I.: Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. Math. (2) 127(2), 309–316 (1988)
    • Serrano, F.: Extension of morphisms defined on a divisor. Math. Ann. 277(3), 395–413 (1987)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno