Ir al contenido

Documat


Non-surjective Gaussian maps for singular curves on K3 surfaces

  • Autores: Claudio Fontanari, Edoardo Sernesi Árbol académico
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 1, 2019, págs. 107-115
  • Idioma: inglés
  • DOI: 10.1007/s13348-018-0223-0
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let (S, L) be a polarized K3 surface with \mathrm {Pic}(S) = \mathbb {Z}[L] and L\cdot L=2g-2, let C be a nonsingular curve of genus g-1 and let f:C\rightarrow S be such that f(C) \in \vert L \vert. We prove that the Gaussian map \Phi _{\omega _C(-T)} is non-surjective, where T is the degree two divisor over the singular point x of f(C). This generalizes a result of Kemeny with an entirely different proof. It uses the very ampleness of C on the blown-up surface \widetilde{S} of S at x and a theorem of L’vovski.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno