Ir al contenido

Documat


Analysis of Optimal Control of the Mechanical Structures Vibrating in the Viscoelastic Environment

  • Yiqun Li [1] ; Hong Wang [2] ; Xiangcheng Zheng [3]
    1. [1] Wuhan University

      Wuhan University

      China

    2. [2] University of South Carolina

      University of South Carolina

      Estados Unidos

    3. [3] Shandong University

      Shandong University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We investigate an optimal control problem with integral constraints for the dynamic vibration of the mechanical structures (e.g., strings, rods or membranes) in the viscoelastic environment, which is governed by a time-fractional wave equation with space-time dependent fractional order and coefficients. To account for the space-time dependent fractional order and coefficients, we develop an equivalent but more feasible variant of the model combined with compact operator theory and Fredholm alternative to prove the well-posedness of the state equation. In addition, we prove some enhanced mapping properties of the variable-order fractional differential operators, based on which we prove the high-order regularity results of the solution to the state equation. Furthermore, we analyze the adjoint equation derived from the variational inequality, which is a Riemann-Liouville time-fractional equation with the hidden-memory variable order and consequently requires more subtle treatments. We ultimately analyze the well-posedness of the optimal control problem and prove the high-order regularity estimates of its solutions.

  • Referencias bibliográficas
    • 1. Adams, R., Fournier, J.: Sobolev Spaces. Elsevier, San Diego (2003)
    • 2. Akil, M., Wehbe, A.: Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions....
    • 3. Akil, M., Ghader, M., Wehbe, A.: The influence of the coefficients of a system of wave equations coupled by velocities on its stabilization....
    • 4. Akil, M., Chitour, Y., Ghader, M., Wehbe, A.: Stability and exact controllability of a Timoshenko system with only one fractional damping...
    • 5. Ali, A., Hayat, K., Zahir, A., Shah, K., Abdeljawad, T.: Qualitative snalysis of fractional stochastic differential equations with variable...
    • 6. Antil, H., Otárola, E., Salgado, A.: A space-time fractional optimal control problem: analysis and discretization. SIAM J. Control. Optim....
    • 7. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusionwave equations. Math Comp. 75,...
    • 8. D’Elia, M., Glusa, C., Otarola, E.: A priori error estimates for the optimal control of the integral fractional Laplacian. SIAM J. Control....
    • 9. Diethelm, K., Ford, N.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)
    • 10. Dong, H., Liu, Y.:Weighted mixed norm estimates for fractional wave equations with VMO coefficients. J. Differ. Equ. 337, 168–254 (2022)
    • 11. Embrechts, P., Maejima, M.: Selfsimilar Processes, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, New...
    • 12. Evans, L.: Partial Differential Equations, Graduate Studies in Mathematics, V 19. American Mathematical Society, Rhode Island (1998)
    • 13. Garrappa, R., Giusti, A., Mainardi, F.: Variable-order fractional calculus: A change of perspective. Commun. Nonlinear Sci. Numer. Simul....
    • 14. Gorenflo, R., Luchko, Y., Yamamoto, M.: Time-fractional diffusion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal....
    • 15. Gunzburger, M., Wang, J.: Error analysis of fully discrete finite element approximations to an optimal control problem governed by a time-fractional...
    • 16. He, J., Zhou, Y.: Local/global existence analysis of fractional wave equations with exponential nonlinearity. Bull. Math. Sci. 189, 103357...
    • 17. Jiang, D., Li, Z.: Coefficient inverse problem for variable order time-fractional diffusion equations from distributed data. Calcolo 59,...
    • 18. Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math....
    • 19. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data....
    • 20. Jin, B., Li, B., Zhou, Z.: Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint. IMA J. Numer....
    • 21. Kubica, A., Ryszewska, K., Yamamoto, M.: Time-fractional differential equations. Springer Briefs in Mathematics. Springer Nature, Singapore...
    • 22. Kunisch, K., Trautmann, P., Vexler, B.: Optimal control of the undamped linear wave equation with measure valued controls. SIAM J. Control....
    • 23. Li, B., Wang, T., Xie, X.: Analysis of a time-stepping discontinuous Galerkin method for fractional diffusion-wave equation with nonsmooth...
    • 24. Li, Y., Wang, H., Zheng, X.: Analysis of a fractional viscoelastic Euler-Bernoulli beam and identification of its piecewise continuous...
    • 25. Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reactionsubdiffusion equations. SIAM J. Numer....
    • 26. Liao, H.,McLean,W., Zhang, J.: A discrete Gronwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J....
    • 27. Lions, J., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)
    • 28. Liu, F., Meerschaert, M., McGough, R., Zhuang, P., Liu, Q.: Numerical methods for solving the multiterm time-fractional wave-diffusion...
    • 29. Liu, J., Fu, H.: An efficient QSC approximation of variable-order time-fractional mobile-immobile diffusion equations with variably diffusive...
    • 30. Liu, W., Yan, N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93, 497–521...
    • 31. Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)
    • 32. Luchko, Y.: Fractional wave equation and damped waves. J. Math. Phys. 54(2013), 031505 (2013)
    • 33. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, 23–28 (1996)
    • 34. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models. Imperial College Press,...
    • 35. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)
    • 36. McLean, W., Thomée, V.: Numerical solution of an evolution equation with a positive-type memory term. J. Austral. Math. Soc. Ser. B 35,...
    • 37. Meerschaert, M., Sikorskii, A.: Stochastic Models for Fractional Calculus, De Gruyter Studies in Mathematics, (2011)
    • 38. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)
    • 39. Mophou, G.: Optimal control of fractional diffusion equation. Comput. Math. Appl. 61, 68–78 (2011)
    • 40. Neittaanmaki, P., Tiba, D., Dekker, M.: Optimal Control of Nonlinear Parabolic Systems: Theory. Algorithms and Applications, Marcel Dekker,...
    • 41. Podlubny, I.: Fractional Differential Equations, Academic Press, (1999)
    • 42. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse...
    • 43. Schechter, M.: Principles of Functional Analysis, American Mathematical Society, (2001)
    • 44. Tatar, N.: A blow up result for a fractionally damped wave equation. Nonlinear Differ. Equ. Appl. 12, 215–226 (2005)
    • 45. Troltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Graduate Studies in Mathematics, AMS,...
    • 46. Van Bockstal, K., Hendy, A., Zaky, M.: Space-dependent variable-order time-fractional wave equation: Existence and uniqueness of its weak...
    • 47. Wang, J., Zhou, Y.: Analysis of nonlinear fractional control systems in Banach spaces. Nonlinear Anal. Real World Appl. 74, 5929–5942...
    • 48. Wehbe, A., Issa, I., Akil, M.: Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth...
    • 49. Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475,...
    • 50. Yamamoto, M.: Fractional calculus and time-fractional differential equations: revisit and construction of a theory. Mathematics 10, 698...
    • 51. Yamamoto,M.: On time fractional derivatives in fractional Sobolev spaces and applications to fractional ordinary differential equations,...
    • 52. Yan, Y., Khan, M., Ford, N.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data....
    • 53. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential...
    • 54. Zheng, X., Wang, H.: Analysis and discretization of a variable-order fractional wave equation. Commun. Nonlinear Sci. Numer. Simul. 104,...
    • 55. Zheng, X., Wang, H.: Discretization and analysis of an optimal control of a variable-order timefractional diffusion equation with pointwise...
    • 56. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
    • 57. Zhou, Y., He, J.: A Cauchy problem for fractional evolution equations with Hilfer’s fractional derivative on semi-infinite interval, Fract....
    • 58. Zhou, Y., He, J.: Well-posedness and regularity for fractional damped wave equations, Fract. Calc. Appl. Anal. 194, 425–458 (2021)
    • 59. Zhou, Z., Gong, W.: Finite element approximation of optimal control problems governed by time fractional diffusion equation. Comput. Math....
    • 60. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advectiondiffusion equation with a nonlinear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno