Ir al contenido

Documat


Qualitative Analysis of Fractional Stochastic Differential Equations with Variable Order Fractional Derivative

  • Amjad Ali [1] ; Khezer Hayat [1] ; Abrar Zahir [1] ; Kamal Shah [2] ; Thabet Abdeljawad [3]
    1. [1] University of Swat

      University of Swat

      Pakistán

    2. [2] Prince Sultan University & University of Malakand
    3. [3] Prince Sultan University, China Medical University, Sefako Makgatho Health Sciences University, Kyung Hee University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This research paper has been dedicated to the investigation of Coupled System of Fractional Stochastic Differential Equations (CSFSDEs), which is an extension of Fractional Stochastic Differential equations, an emerging field that is in a developmental stage and demands the focused attention of experts. Within this context, the research article is mainly focused on determining solutions for CSFSDEs featuring variable order derivatives. This article will lay the foundation for establishing the necessary conditions for the existence and uniqueness of the considered CSFSDEs.

      To achieve this, we have employed Picard’s iteration techniques, which have proven effective in this domain. Furthermore, we will set the groundwork for defining conditions of Ulam’s type stabilities specific to the proposed model. To conclude this work, we have presented an illustrative example that serves to explain the primary findings of our research.

  • Referencias bibliográficas
    • 1. Atangana, A., Alqahtani, R.T.: Stability analysis of nonlinear thin viscous fluid sheet flow equation with local fractional variable order...
    • 2. Abouagwa, M., Liu, J., Li, J.: Carathéodory approximations and stability of solutions to non-lipschitz stochastic fractional differential...
    • 3. Zhang, S.: The uniqueness result of solutions to initial value problems of differential equations of variable-order. Rev. de la Real Acad....
    • 4. Khan, H., Alzabut, J., Gulzar, H.: Existence of solutions for hybrid modified abc-fractional differential equations with p-laplacian operator...
    • 5. Joseph, D., Ramachandran, R., Alzabut, J., Jose, S.A., Khan, H.: A fractional-order density-dependent mathematical model to find the better...
    • 6. Kamrani, M.: Numerical solution of stochastic fractional differential equations. Numer. Algorithms 68, 81–93 (2015)
    • 7. Shitikova, M.: Fractional operator viscoelastic models in dynamic problems of mechanics of solids: a review. Mech. Solids, 1–33 (2022)
    • 8. Kumar, S., Chauhan, R., Momani, S., Hadid, S.: Numerical investigations on covid-19 model through singular and non-singular fractional...
    • 9. Khan, M.A., Ullah, S., Kumar, S.: A robust study on 2019-ncov outbreaks through non-singular derivative. Eur. Phys. J. Plus 136, 1–20 (2021)
    • 10. Kumar, S., Kumar, A., Samet, B., Dutta, H.: A study on fractional host-parasitoid population dynamical model to describe insect species....
    • 11. Kumar, S., Kumar, R., Osman, M., Samet, B.: A wavelet based numerical scheme for fractional order seir epidemic of measles by using genocchi...
    • 12. Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due...
    • 13. Kumar, S., Kumar, R., Cattani, C., Samet, B.: Chaotic behaviour of fractional predator–prey dynamical system. Chaos Solitons Fract. 135,...
    • 14. Hussain, S.,Madi, E.N., Khan, H., Gulzar, H., Etemad, S., Rezapour, S., Kaabar,M.K.: On the stochastic modeling of covid-19 under the...
    • 15. Khan, H., Li, Y., Chen, W., Baleanu, D., Khan, A.: Existence theorems and Hyers–Ulam stability for a coupled system of fractional differential...
    • 16. Mei, R., Xu, Y., Kurths, J.: Transport and escape in a deformable channel driven by fractional gaussian noise. Phys. Rev. E 100(2), 022114...
    • 17. Han, M., Xu, Y., Pei, B.: Mixed stochastic differential equations: averaging principle result. Appl. Math. Lett. 112, 106705 (2021)
    • 18. Zeng, C., Yang, Q., Chen, Y. et al.: Lyapunov techniques for stochastic differential equations driven by fractional brownian motion. In:...
    • 19. Liu, Q., Xu, Y., Kurths, J.: Bistability and stochastic jumps in an airfoil system with viscoelastic material property and random fluctuations....
    • 20. Decreusefond, L., Üstünel, A.S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10, 177–214 (1999)
    • 21. Li, W., Liu, M., Wang, K., et al.: A generalization of Ito’s formula and the stability of stochastic volterra integral equations. J. Appl....
    • 22. Moualkia, S., Xu, Y.: On the existence and uniqueness of solutions for multidimensional fractional stochastic differential equations with...
    • 23. Ershov, M.: Extension of measures and stochastic equations. Teoriya Veroyatnostei i ee Primeneniya 19(3), 457–471 (1974)
    • 24. Prokhorov, Y.V.: Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl. 1(2), 157–214 (1956)
    • 25. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, Vol. 288, Springer, Berlin (2013)
    • 26. Ben Makhlouf, A., Mchiri, L., Rhaima, M.: Ulam-hyers-rassias stability of stochastic functional differential equations via fixed point...
    • 27. Kim, S.S., Rassias, J.M., Hussain, N., Cho, Y.J.: Generalized Hyers–Ulam stability of general cubic functional equation in random normed...
    • 28. Wang, Y., Xu, J., Kloeden, P.E.: Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative. Nonlinear...
    • 29. Prohorov, Y.V.: Shodimost’slutchaynykh processov i predielnye teoremy teorii veroiatnosti [in russian],[convergence of random processes...
    • 30. Billingsley, P.: Weak Convergence of Measures: Applications in Probability. SIAM (1971)
    • 31. Thabet, S.T., Matar, M.M., Salman, M.A., Samei, M.E., Vivas-Cortez, M., Kedim, I.: On coupled snap system with integral boundary conditions...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno