Ir al contenido

Documat


Symmetry and Integrability of PT -Symmetric Semi-discrete Short pulse equation: A study of Rogue, Breather, and Soliton Solutions

  • Asifa Ashraf [1] ; Zeeshan Amjad [1] ; Wen-Xiu Ma [2] ; Nauman Raza [3]
    1. [1] Zhejiang Normal University

      Zhejiang Normal University

      China

    2. [2] North-West University, University of South Florida, Zhejiang Normal University, King Abdulaziz University
    3. [3] University of the Punjab, Near East University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Spontaneous symmetry breaking and PT -symmetry attracts the modern researcher due to its implementation in many fields such as microwave propagation, nonlinear optics. This article studies the PT -symmetric semi-discrete short pulse equation (PT -sdSPE) that can be viewed as a cognate to the Ablowitz-Ladik lattice in the ultra-short-pulse regime. The Lax pair of the system is constructed and demonstrated that one can obtain a variety of new integrable models by symmetry reductions. Furthermore, quasi-grammian solutions of PT -sdSPE are presented using the binary Darboux transformation. Finally, as an explicit example, symmetry preserving and non-preserving grammians, rogue, breather and soliton solutions are celebrated.

  • Referencias bibliográficas
    • 1. Schäfer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D 196, 90 (2004)
    • 2. Chung, Y., Jones, C., Schäfer, T., Wayne, C.E.: Ultra-short pulses in linear and nonlinear media. Nonlinearity 18, 1351 (2005)
    • 3. Robelo, M.L.: On equations which describe pseudospherical surfaces. Stud. Appl. Math. 81, 221 (1989)
    • 4. Feng, B.F.: Complex short pulse and coupled complex short pulse equations. Physica D 297, 62 (2015)
    • 5. Zhang, Z.Y., Cheng, Y.F.: Conservation laws of the generalized short pulse equation. Chin. Phys. B 24, 020201 (2015)
    • 6. Sakovich, A., Sakovich, S.: The short pulse equation is integrable. J. Phys. Soc. Jpn. 74, 239 (2005)
    • 7. Brunelli, J.C.: The short pulse hierarchy. J. Math. Phys. 46, 123507 (2005)
    • 8. Brunelli, J.C.: The bi-Hamiltonian structure of the short pulse equation. Phys. Lett. A 353, 475 (2006)
    • 9. Matsuno, Y.: Multiloop soliton and multibreather solutions of the short pulse model equation. J. Phys. Soc. Jpn. 76, 084003 (2007)
    • 10. Xu, J.: Long-time asymptotics for the short pulse equation. J. Differ. Equation 265, 3494 (2018)
    • 11. Boutet de Monvel, A., Shepelsky, D., Zielinski, L.: The short pulse equation by a Riemann-Hilbert approach. Lett. Math. Phys. 107, 1345...
    • 12. Matsuno, Y.: Periodic solutions of the short pulse model equation. J. Math. Phys. 49, 073508 (2008)
    • 13. Saleem, U., Hassan, M.: Darboux transformation and multisoliton solutions of the short pulse equation. J. Phys. Soc. Jpn. 81, 094008 (2012)
    • 14. Bender, C.M., Boettcher, S.: Real spectra in Non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)
    • 15. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrodinger equation. Phys. Rev. Lett. 110, 064105 (2013)
    • 16. Gurses,M., Pekcan, A.: Nonlocal modified KdV equations and their soliton solutions by HirotaMethod. Commun. Nonlinear Sci. Numer. Simul....
    • 17. Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100,...
    • 18. Fleury, R., Sounas, D., Alu, A.: An invisible acoustic sensor based on parity-time symmetry. Nat. Commun. 6, 1 (2015)
    • 19. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in PT -symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)
    • 20. Zhang, Y., Liu, Y., Tang, X.: A general integrable three component coupled nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 89,...
    • 21. Hanif, Y., Saleem, U.: Broken and unbroken PT -symmetric solutions of semi-discrete nonlocal nonlinear Schrodinger equation. Nonlinear...
    • 22. Stalin, S., Senthilvelan, M., Lakshmanan, M.: Degenerate soliton solutions and their dynamics in the nonlocal Manakov system: I symmetry...
    • 23. Feng, B.F., Maruno, K., Ohta, Y.: Integrable discretization of a multi-component short pulse equation. J. Math. Phys. 56, 043502 (2015)
    • 24. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer Press, Berlin (1991)
    • 25. Amjad, Z., Haider, B., Ma, W.X.: Integrable discretization and multi-soliton solutions of negative order akns equation. Qual. Theory Dyn....
    • 26. Wang, X., He, J.S.: Darboux transformation and general soliton solutions for the reverse space–time nonlocal short pulse equation. Physica...
    • 27. Wang, X., Kang, J., Zhang, J., Zhao, T., Jin, W.: Darboux transformation and loop soliton solutions for the complex space–time-shifted...
    • 28. Ma, W.X., Zhang, Y.J.: Darboux transformations of integrable couplings and applications. Rev. Math. Phys. 30, 1850003 (2018)
    • 29. Amjad, Z., Haider, B.: Binary darboux transformation of time-discrete generalized lattice heisenberg magnet model. Chaos, Solitons Fractals...
    • 30. Ma, W.X.: Binary darboux transformation for general matrix mkdv equations and reduced counterparts. Choas Solitons Fractals 146, 110824...
    • 31. Ma, W.X.: Binary darboux transformation of vector nonlocal reverse-time integrable NLS equations. Chaos, Solitons Fractals 180, 114539...
    • 32. Amjad, Z., Ma, W.X., Zulqarnain, R.M.: Double breather and peak solitons of a semi discrete short pulse equation, Rev. Math. Phys. (2025)...
    • 33. Amjad, Z.: Breather and soliton solutions of semi-discrete negative order AKNS equation. Eur. Phys. J. Plus 137, 1036 (2022)
    • 34. Nimmo, J.J.C., Yilmaz, H.: Binary darboux transformation for the sasa-satsuma equation. J. Phys. A: Math. Theor. 48, 425202 (2015)
    • 35. Hanif, Y., Sarfraz, H., Saleem, U.: PT -symmetric semi-discrete short pulse equation. Results in Phys. 19, 103522 (2020)
    • 36. Gelfand, I., Gelfand, S., Retakh, V., Wilson, R.L.: Quasideterminants. Adv. Math. 193, 141 (2005)
    • 37. Yuan, W.X., Guo, R.: Physics-guided multistage neural network: a physically guided network for step initial values and dispersive shock...
    • 38. Huang, Y.H., Guo, R.: Wave breaking, dispersive shock wave, and phase shift for the defocusing complex modified KdV equation. Chaos 34,...
    • 39. Liu, Y.H., Guo, R., Zhang, J.W.: Inverse scattering transform for the discrete nonlocal PT symmetric nonlinear Schrödinger equation with...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno