Ir al contenido

Documat


Integrable Discretization and Multi-soliton Solutions of Negative Order AKNS Equation

  • Zeeshan Amjad [1] ; Bushra Haider [2] ; Wen-Xiu Ma [3]
    1. [1] Zhejiang Normal University

      Zhejiang Normal University

      China

    2. [2] University of the Punjab

      University of the Punjab

      Pakistán

    3. [3] University of South Florida

      University of South Florida

      Estados Unidos

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01140-7
  • Enlaces
  • Resumen
    • In this paper, we propose the discrete and two semi-discrete versions of negative order AKNS equation through the discretization of associated Lax pair of continuous negative order AKNS equation. Discrete and semi-discrete multi-soliton solutions are computed by using Darboux transformation and are presented in the form of quasideterminants. The dynamics of one soliton and interaction of two soliton solutions for negative order AKNS equation are presented in the end.

  • Referencias bibliográficas
    • 1. Josephson, B.D.: Supercurrents through barriers. Adv. Phys. 14, 419 (1965)
    • 2. Remoissenet, M.: Wave Called Solitons: Concepts and Experiments. Springer-Verlag, Berlin (1996)
    • 3. Lamb, G.L.: Analytical description of ultrashort optical pulse propagation in a resonant medium. Rev. Mod. Phys. 43, 99 (1971)
    • 4. Qiao, Z.J., Strampp, W.: Negative order MKdV hierarchy and a new integrable Neumann-like system. Phys. A 313, 365 (2002)
    • 5. Konno, K., Oono, H.: New integrable dispersionless equations. J. Phys. Soc. Jpn. 63, 377 (1994)
    • 6. Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integrable equation with Peakson solutions. Theor. Math. Phys. 133, 1463 (2002)
    • 7. Camassa, R., Holm, D.D.: An integrable shallow-water equation with Peakson solitons. Phys. Rev. Lett. 71, 1661 (1993)
    • 8. Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation. Phys. D...
    • 9. Hone, A.N.W.: The associated Camassa-Holm equation and the KdV equation. J. Phys. A Math. Gen. 32, 307 (1999)
    • 10. Schafer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196, 90 (2004)
    • 11. Sakovich, A., Sakovich, S.: The short pulse equation is integrable. J. Phys. Soc. Jpn. 74, 239 (2005)
    • 12. Zhang, D.J., Ning, T.K., Bi, J.B., Chen, D.Y.: New symmetries for the Ablowitz-Ladik hierarchies. Phys. Lett. A 359, 458 (2006)
    • 13. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrodinger Systems. Cambridge University Press, Cambridge...
    • 14. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer-Verlag, Berlin (1987)
    • 15. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)
    • 16. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)
    • 17. Rogers, C., Schief,W.K.: Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory. Cambridge Texts in...
    • 18. Amjad, Z., Haider, B.: Darboux transformations of supersymmetric Heisenberg magnet model. J. Phys. Commun. 2, 035019 (2018)
    • 19. Liu, X.K., Wen, X.Y., Lin, Z.: Higher-order regulatable rogue wave and hybrid interaction patterns for a new discrete complex coupled...
    • 20. Liu, X.K., Wen, X.Y.: Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4 × 4 Lax pair. Chin....
    • 21. Amjad, Z., Haider, B.: Binary Darboux transformations of supersymmetric Heisenberg magnet model. Theor. Math. Phys. 199, 784 (2019)
    • 22. Wen, X.Y., Liu, X.K.: Modulational instability and rogue wave solutions for the mixed focusing defocusing semi-discrete coherently coupled...
    • 23. Amjad, Z., Haider, B.: Binary Darboux transformation of time-discrete generalized lattice Heisenberg magnet model. Chaos Solitons Fractals...
    • 24. Amjad, Z., Haider, B.: Quasi-Grammian solutions of the generalized Heisenberg magnet model. Can. J. Phys. 93, 303 (2020)
    • 25. Shi, Y., Nimmo, J.J.C., Zhang, D.: Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV...
    • 26. Wang, X., Liu, C., Wang, L.: Rogue waves and W-shaped solitons in the multiple self-induced transparency system. Chaos 27, 093106 (2017)
    • 27. Wei, J., Wang, X., Geng, X.: Periodic and rational solutions of the reduced Maxwell-Bloch equations. Commun. Nonlinear Sci. Numer. Simul....
    • 28. Riaz, H.W.A.: Darboux transformation for a negative order AKNS equation. Commun. Theor. Phys. 71, 912 (2019)
    • 29. Zhang, D., Ji, J., Zhao, S.: Soliton scattering with amplitude changes of a negative order AKNS equation. Phys. D 238, 2361 (2009)
    • 30. Guo-Fu, Yu.: Discrete analogues of a negative order AKNS equation. Stud. Appl. Math. 135, 117 (2015)
    • 31. Amjad, Z., Khan, D.: Binary Darboux transformation for a negative-order AKNS equation. Theor. Math. Phys. 206(2), 141 (2021)
    • 32. Yu, G.F., Lao, D.: Complex and coupled complex negative order AKNS equation. Commun. Nonlinear. Sci. Numer. Simul. 30, 196 (2016)
    • 33. Gelfand, I.M., Retakh, V.S.: Determinants of matrices over noncommutative rings. Funct. Anal. Appl. 25, 102 (1991)
    • 34. Gelfand, I., Gelfand, S., Retakh, V., Wilson, R.L.: Quasideterminants. Adv. Math. 193, 141 (2005)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno