Ir al contenido

Documat


On the analyticity of the nonlinear Fourier transform of the Benjamin-Ono equation on T

  • P. Gérard [1] ; T. Kappeler [2] ; P. Topalov [3]
    1. [1] University of Paris-Saclay

      University of Paris-Saclay

      Arrondissement de Palaiseau, Francia

    2. [2] University of Zurich

      University of Zurich

      Zürich, Suiza

    3. [3] Northeastern University

      Northeastern University

      City of Boston, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 3, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01053-6
  • Enlaces
  • Resumen
    • We prove that the nonlinear Fourier transform of the Benjamin-Ono equation on T, also referred to as Birkhoff map, is a real analytic diffeomorphism from the scale of Sobolev spaces Hs 0 (T, R), s > −1/2, to the scale of weighted 2−sequence spaces, h s+1/2 r,0 (N, C), s > −1/2. As an application we show that for any −1/2 < s < 0, the flow map of the Benjamin-Ono equation St 0 : Hs 0 (T, R) → Hs 0 (T, R) is nowhere locally uniformly continuous in Hs 0 (T, R).

  • Referencias bibliográficas
    • Angulo Pava, J., Hakkaev, S.: Illposedness for periodic nonlinear dispersive equations. Elec. J. Differential Equations 2010(119), 1–19 (2010)
    • Benjamin, T.: Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559–592 (1967)
    • Berti, M., Kappeler, T., Montalto, R.: Large KAM tori for perturbations of the defocusing NLS equation, Astérisque, 403, (2018)
    • Davis, R., Acrivos, A.: Solitary internal waves in deep water. J. Fluid Mech. 29, 593–607 (1967)
    • Gérard, P., Kappeler, T.: On the integrability of the Benjamin-Ono equation. Comm. Pure Appl. Math. 74(8), 1685–1747 (2021)
    • Gérard, P., Kappeler, T., Topalov, P.: Sharp well-posedness results of the Benjamin-Ono equation in Hs(T, R) and qualitative properties of...
    • Gérard, P., Kappeler, T., Topalov, P.: On the spectrum of the Lax operator of the Benjamin-Ono equation on the torus. J. Funct. Anal. 279(12),...
    • Gérard, P., Kappeler, T., Topalov, P.: On the analytic Birkhoff normal form of the Benjamin-Ono equation and applications, Nonlinear Anal.,...
    • Gérard, P., Kappeler, T., Topalov, P.: On smoothing properties of the Benjamin-Ono equation and Tao’s gauge transform. Ann. Sci. Éc. Norm....
    • Grébert, B., Kappeler, T.: The defocusing NLS and its normal form, EMS Series of Lectures in Mathematics, Eur. Math. Soc., (2014)
    • Kappeler, T., Pöschel, J.: KdV& KAM, 45, Springer, (2003)
    • Kappeler, T., Molnar, J.: On the wellposedness of the KdV/KdV2 equations and their frequency maps. Ann. Inst. H. Poincaré Anal. Non Linéaire...
    • Kappeler, T., Topalov, P.: Global well-posedness of KdV in H−1(T, R). Duke Math. J. 135(2), 327–360 (2006)
    • Kuksin, S.: Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications, 19, Oxford University Press, (2000)
    • Lax, P.: Functional Analysis, John Wiley, (2002)
    • Molinet, L.: Global well-posedness in L2 for the periodic Benjamin-Ono equation. American J. Math. 130(3), 635–683 (2008)
    • Molinet, L.: Private communication
    • Molinet, L., Pilod, D.: The Cauchy problem for the Benjamin-Ono equation in L2 revisited. Anal. and PDE 5(2), 365–395 (2012)
    • Nakamura, A.: A direct method of calculating periodic wave solutions to non-linear evolution equations. I. Exact two-periodic wave solutions....
    • Pöschel , J., Trubowitz, E.: Inverse Spectral Theory, Academic Press, (1978)
    • Saut, J.-C.: Benjamin-Ono and intermediate long wave equations: modeling, IST, and PDE, Fields Institute Communications, 83, Springer, (2019)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno