Ir al contenido

Documat


Global well-posedness in L2 for the periodic Benjamin-Ono equation

  • Autores: Luc Molinet
  • Localización: American journal of mathematics, ISSN 0002-9327, Vol. 130, Nº 3, 2008, págs. 635-683
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove that the Benjamin-Ono equation is globally well-posed in $ H^s({\Bbb T}) $ for $ s\ge 0 $. Moreover we show that the associated flow-map is Lipschitz on every bounded set of $ H^s_0({\Bbb T}) $, $s\ge 0$, and even real-analytic in this space for small times. This result is sharp in the sense that the flow-map (if it can be defined and coincides with the standard flow-map on $ {H}_0^\infty({\Bbb T}) $) cannot be of class $ C^{1+\alpha} $, $\alpha>0 $, from $ H_0^s({\Bbb T}) $ into $ H_0^s({\Bbb T}) $ as soon as $ s< 0 $.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno