Ir al contenido

Documat


Topological Pressure of Non-Autonomous Iterated Function Systems for Non-Compact Sets

  • Zhongxuan Yang [1] ; Xiaojun Huang [1]
    1. [1] Chongqing University

      Chongqing University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 4, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this manuscript, we introduce the topological pressure and the capacity topological pressure of non-autonomous iterated function systems via the Carathéodory–Pesin structure. Some properties of these pressures are established. Subsequently, we discuss the relationship between the upper capacity topological pressure of a skew-product transformation and a non-autonomous iterated function system for an arbitrary subset.

      Finally, we give lower and upper estimates of the topological pressure of nonautonomous iterated function systems using local pressure.

  • Referencias bibliográficas
    • 1. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114(2), 309–319 (1965)
    • 2. Barreira, L.M.: A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergodic Theory...
    • 3. Bi´s, A.: Topological and measure-theoretical entropies of nonautonomous dynamical systems. J. Dyn. Diff. Equat. 30, 273–285 (2018)
    • 4. Bi´s, A., Mihailescu, E.: Inverse pressure for finitely generated semigroups. Nonlinear Anal. 222, 112942 (2022)
    • 5. Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)
    • 6. Bowen, R.: Topological entropy for noncompact sets. Trans. Am. Math. Soc. 184, 125–136 (1973)
    • 7. Brin, M., Katok, A.: On local entropy. Geometric Dynamics, pages 30–38, (1983)
    • 8. Bufetov, A.: Topological entropy of free semigroup actions and skew-product transformations. Journal of dynamical and control systems 5,...
    • 9. Climenhaga, V.A.: Thermodynamic formalism and multifractal analysis for general topological dynamical systems. The Pennsylvania State University,...
    • 10. Cui,M., Li, Z.: A variational principle of the topological pressures for non-autonomous iterated function systems. Qualitative Theory...
    • 11. Feng, D.-J., Huang, W.: Variational principles for topological entropies of subsets. J. Funct. Anal. 263(8), 2228–2254 (2012)
    • 12. Ghane, F.H., Sarkooh, J.N.: On topological entropy and topological pressure of non-autonomous iterated function systems. Journal of the...
    • 13. Huang, X., Li, Z., Zhou, Y.: A variational principle of topological pressure on subsets for amenable group actions. Discrete & Continuous...
    • 14. Huang, X., Wen, X., Zeng, F.: Topological pressure of nonautonomous dynamical systems. Nonlinear Dyn. Syst. Theory 8(1), 43–48 (2008)
    • 15. Ju, Y., Liu, H., Yang, Q.: Entropy of non-autonomous iterated function systems. RM 79(5), 204 (2024)
    • 16. Ju, Y., Ma, D., Wang, Y.: Topological entropy of free semigroup actions for noncompact sets. Discrete & Continuous Dynamical Systems:...
    • 17. Kolyada, S., Snoha, L., et al.: Topological entropy of nonautonomous dynamical systems. Random and computational dynamics 4(2), 205 (1996)
    • 18. Lin, X., Ma, D., Wang, Y.: On the measure-theoretic entropy and topological pressure of free semigroup actions. Ergodic Theory Dynam....
    • 19. Ma, J.-H., Wen, Z.-Y.: A billingsley type theorem for bowen entropy. Comptes Rendus. Mathématique 346(9–10), 503–507 (2008)
    • 20. Mihailescu, E.: Amalgamated pressure of multipotentials for semigroups. The Journal of Geometric Analysis 35(2), 64 (2025)
    • 21. Pesin, Y.B.: Dimension theory in dynamical systems: contemporary views and applications. University of Chicago Press, (2008)
    • 22. Pesin, Y.B., Pitskel’, B.S.: Topological pressure and the variational principle for noncompact sets. Funct. Anal. Appl. 18, 307–318 (1984)
    • 23. Rempe-Gillen, L., Urba ´nski, M.: Non-autonomous conformal iterated function systems and moran-set constructions. Trans. Am. Math. Soc....
    • 24. Ruelie, D.: Statistical mechanics on a compact set with Zv action satisfying expansiveness and specification. Trans. Am. Math. Soc. 185,...
    • 25. Sarkooh, J.N.: Variational principles on subsets of non-autonomous dynamical systems: topological pressure and topological entropy. arXiv...
    • 26. Si, H., Liang, Y., Zhang, J.: Topological entropy for non-autonomous iterated function systems. Journal of Difference Equations and Applications,...
    • 27. Tang, J., Li, B., Cheng, W.-C.: Some properties on topological entropy of free semigroup action. Dynamical Systems 33(1), 54–71 (2018)
    • 28. Tang, X., Cheng, W.-C., Zhao, Y.: Variational principle for topological pressures on subsets. J. Math. Anal. Appl. 424(2), 1272–1285 (2015)
    • 29. Walters, P.: An introduction to ergodic theory. Springer-Verlag, (1982)
    • 30. Xiao, Q., Ma, D.: Topological pressure of free semigroup actions for non-compact sets and bowen’s equation, i. Journal of Dynamics and...
    • 31. Xiao, Q., Ma, D.: Variational principle of topological pressure of free semigroup actions for subsets. Qualitative theory of dynamical...
    • 32. Zheng, D., Chen, E.: Bowen entropy for actions of amenable groups. Israel J. Math. 212, 895–911 (2016)
    • 33. Zhong, X.F., Chen, Z.J.: Variational principle for topological pressure on subsets of free semigroup actions. Acta Mathematica Sinica,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno