Ir al contenido

Documat


Ergodicity of Replicator Equation with Historic Behavior Perturbation

  • Farrukh Mukhamedov [1] ; Chin Hee Pah [2] ; Azizi Rosli [3]
    1. [1] United Arab Emirates University

      United Arab Emirates University

      Emiratos Árabes Unidos

    2. [2] International Islamic University Malaysia

      International Islamic University Malaysia

      Malasia

    3. [3] University of Technology Malaysia

      University of Technology Malaysia

      Malasia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 4, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Stable and historical behaviours are common in dynamical systems studied within evolutionary game theory. This motivates the analysis of replicator equations obtained as convex combinations of two equations that display contrasting dynamical regimes. A canonical example is the evolutionary dynamics of the Rock–Paper–Scissors (RPS) game, whose payoff matrix generates a well-known replicator flow. Previous research has demonstrated that, depending on the parameter λ ∈ [0, 1], a convex combination of a regular replicator operator and a non-ergodic operator may inherit either regularity or non-ergodicity. The current study creates a simplified model that incorporates higher-order interaction components and a unique subclass of replicator equations.

      We demonstrate that the resulting system is strictly non-ergodic at λ = 1, yet displays an increasing propensity toward ergodicity as λ approaches 1 from below. Although the framework is presently restricted to a specialised family of models, it establishes a tractable setting for future investigations into the interplay between higher-order effects and ergodicity in evolutionary game dynamics.

  • Referencias bibliográficas
    • 1. Basson, M., Fogarty, M.J.: Harvesting in discrete-time predator-prey systems. Math. Biosci. 141(1), 41–74 (1997)
    • 2. Bernshtein, S.N.: Solution of a mathematical problem in the theory of heredity. Soc. Sci. Inf. 15(4–5), 797–821 (1976)
    • 3. Cressman, R., Tao, Y.: The replicator equation and other game dynamics. PNAS 111, 10810–10817 (2014)
    • 4. Dai, H., Wang, X., Lu, Y., Hou, Y., Shi, L.: The effect of intraspecific cooperation in a three-species cyclic predator-prey model. Appl....
    • 5. Devaney, R.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Westview Press, Boulder (2003)
    • 6. Dohtani, A.: Occurrence of chaos in higher-dimensional discrete-time systems. SIAM J. Appl. Math. 52(6), 1707–1721 (1992)
    • 7. Edelstein-Keshet, L.: Mathematical Models in Biology. SIAM, Philadelphia, PA (2005)
    • 8. Ganikhodjaev, N.N., Ganikhodjaev, R.N., Jamilov, U.U.: Quadratic stochastic operators and zero-sum game dynamics. Ergodic Theory Dyn Syst....
    • 9. Ganikhodzhaev, N.N., Zanin, D.V.: On a necessary condition for the ergodicity of quadratic operators defined on the two-dimensional simplex....
    • 10. Ganikhodzhaev, R., Mukhamedov, F., Rozikov, U.: Quadratic stochastic operators and processes: Results and open problems. Infinite Dimen....
    • 11. Ganikhodzhaev, R.N.: Quadratic Stochastic Operators, Lyapunov Functions, and Tournaments. Russian Academy of Sciences. Sbornik Mathematics...
    • 12. Garay, B.M., Hofbauer, J.: Robust Permanence for Ecological Differential Equations, Minimax, and Discretizations. SIAM J. Math. Anal....
    • 13. Goel, N.S., Maitra, S.C., Montroll, E.W.: On the volterra and other nonlinear models of interacting populations. Rev. Modern Phys. 43(2),...
    • 14. Hofbauer, J., Hutson, V., Jansen, W.: Coexistence for systems governed by difference equations of Lotka-Volterra type. J. Math. Biology...
    • 15. Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics. Cambridge University Press, Cambridge (1998)
    • 16. Jamilov, U.: On a Family of Strictly Non-Volterra Quadratic Stochastic Operators. J. of Phys.: Conf. Ser.697, 012,013 (2016)
    • 17. Jamilov, U., Reinfelds, A.: A family of Volterra cubic stochastic operators. J. Convex Anal. 28(1), 19–30 (2021)
    • 18. Jamilov, U.U., Khamraev, A.Y., Ladra, M.: On a Volterra Cubic Stochastic Operator. Bull. Math. Biology 80(2), 319–334 (2018)
    • 19. Jamilov, U., Mukhamedov, F.: A class of Lotka-Volterra operators with Historical Behavior. Results Math. 77(4), 169 (2022)
    • 20. Karush, W.: Minima of functions of several variables with inequalities as side conditions, Ph.D. thesis, Thesis (S.M.)–University of Chicago,...
    • 21. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. Proc. Berkeley Sympos. math. Statist. Probability, California July 31 - August 12, 1950,...
    • 22. Lotka, A.J.: Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42(8), 1595–1599 (1920)
    • 23. Lu, Y., Wang, X., Du, C., Wang, Y., Geng, Y., Shi, L., Park, J.: Understanding the role of neutral species by means of high-order interaction...
    • 24. Lu, Y., Shen, C., Wu, M., Du, C., Shi, L., Park, J.: Enhancing coexistence of mobile species in the cyclic competition system by wildlife...
    • 25. Lu, Y., Wang, X., Wu, M., Shi, L., Park, J.: Effects of species vigilance on coexistence in evolutionary dynamics of spatial rock–paper–scissors...
    • 26. Lu, Z., Wang, W.: Permanence and global attractivity for Lotka-Volterra difference systems. J. Math. Biol. 39(3), 269–282 (1999)
    • 27. Ma, T., Wang, Y., Li, X.: Convex combination multiple populations competitive swarm optimization for moving target search using UAVs....
    • 28. Maynard, Smith J., Slatkin, M.: The stability of predator–prey systems. Ecology 54, 384–391 (1973)
    • 29. Mukhamedov, F., Embong, A.F.: Lyapunov functions and dynamics of infinite dimensional Volterra operators. Chaos, Solitons & Fractals...
    • 30. Mukhamedov, F., Embong, A.F.: On b-bistochastic quadratic stochastic operators. J. Inequal. Appl. 2015(1), 226 (2015)
    • 31. Mukhamedov, F., Embong, A.F., Rosli, A.: Orthogonal-preserving and surjective cubic stochastic operators. Annals Funct. Anal. 8(4), 490–501...
    • 32. Mukhamedova, F., Mukhamedov, F.: Stability and robustness of kinetochore dynamics under sudden perturbations and stochastic influences....
    • 33. Mukhamedov, F., Pah, C.H., Rosli, A.: On Non-ergodic Volterra Cubic Stochastic Operators. Qualit. Theory Dyn. Syst. 18(3), 1225–1235 (2019)
    • 34. Mukhamedov, F., Pah, C.H., Rosli, A.: A class of bijective Lotka-Volterra operators and its application. Math. Metheds Appl. Sci. 46,...
    • 35. Murray, J.D.: Math. Biology, Springer, Berlin (2002)
    • 36. Mukhamedov, F., Saburov, M.: Stability and Monotonicity of Lotka-Volterra Type Operators. Qualit. Theory Dyn. Syst. 16(2), 249–267 (2017)
    • 37. Pah, C.H., Rosli, A.: On a Class of Non-Ergodic Lotka-Volterra Operator. Lobachevskii Jour. Math. 43, 2591–2598 (2022)
    • 38. Roth, G., Salceanu, P.L., Sschreiber, S.L.: Robust permanence for ecological maps. SIAM J. Math. Anal. 49, 3527–3549 (2017)
    • 39. Rozikov, U.A., Khamraev, A.Y.: On cubic operators defined on finite-dimensional simplexes. Ukrainian Math. Jour. 56(10), 1699–1711 (2004)
    • 40. Ruelle, D.: Historical behaviour in smooth dynamical systems, in book: H.W. Broer, et al. (Eds.), Global Analysis of Dynamical Systems,...
    • 41. Saburov, M.: On divergence of any order cesáaro mean of Lotka-Volterra operators. Annals of Funct. Anal. 6(4), 247–254 (2015)
    • 42. Saburov, M.: Some examples for stable and historic behavior in replicator equations. Examp. Counterexampl. 2, 100091 (2022)
    • 43. Saburov, M.: Historic Behavior in Rock–Paper–Scissor Dynamics. Qualit. Theory Dyn. Syst. 22, 121 (2023)
    • 44. Sandholm, W.H.: Population games and evolutionary dynamics. MIT Press, Cambridge (2010)
    • 45. Schreiber, S.J.: Persistence despite perturbations for interacting populations. J. Theoret. Biol. 242, 844–852 (2006)
    • 46. Takens, F.: Orbits with historic behaviour, or non-existence of averages. Nonlinearity 21, T33–T36 (2008)
    • 47. Ulam, S.: A collection of mathematical problems. Interscience Publishers (1960)
    • 48. Vallander, S.S.: Change in the orbit orientation for a certain family of stochastic quadratic mappings. Vestnik St. Petersburg Univ. Math....
    • 49. Venkateswaran, V.R., Gokhale, C.S.: Evolutionary dynamics of complex multiple games. Proc. R. Soc. B 286, 20190900 (2019)
    • 50. Wang, X., Lu, Y., Shi, L., et al.: The effect of territorial awareness in a three-species cyclic predator–prey model. Sci. Rep. 12, 1821...
    • 51. Zakharevich, M.I.: on the Behaviour of Trajectories and the Ergodic Hypothesis for Quadratic Mappings of a Simplex. Russian Math. Surv....
    • 52. Zhu, Y., Xia, C., Chen, Z.: Nash equilibrium in iterated multiplayer games under asynchronous bestresponse dynamics IEEE Trans. Automat....
    • 53. Zhu, Y., Zhang, Z., Xia, C., Chen, Z.: Equilibrium analysis and incentive-based control of the anticoordinating networked game dynamics....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno