Ir al contenido

Documat


On the Chebyshev Property of a Class of Hyperelliptic Abelian Integrals

  • Yangjian Sun [1] ; Shaoqing Wang [2] ; Jiazhong Yang [3]
    1. [1] Shangrao Normal University

      Shangrao Normal University

      China

    2. [2] Central China Normal University

      Central China Normal University

      China

    3. [3] Peking University

      Peking University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01136-3
  • Enlaces
  • Resumen
    • This paper aims to demonstrate the Chebyshev property of the linear space V = { 2 i=0 αi h x2i ydx : α0, α1, α2 ∈ R, h ∈ } (which is equivalent to that every function of V has at most 2 zeros, counted with multiplicity), with three hyperelliptic Abelian integrals h x2i ydx (i = 0, 1, 2) as generators, where h is an oval determined by H(x, y) = y2 2 + (x) = h, and (x) is an even polynomial of indefinite degree with real non-Morse critical points. As an application, we can obtain the exact upper bound for the number of zeros of a class of hyperelliptic Abelian integrals related to some planar polynomial Hamiltonian systems with two cusps and a nilpotent center.

  • Referencias bibliográficas
    • 1. Arnold, V.I.: Geometrical methods in the theory of ordinary differential equations. Grundlehren der mathematischen wissenschaften, vol....
    • 2. Binyamini, G., Novikov, D., Yakovenko, S.: On the number of zeros of Abelian integrals. Invent. Math. 181(2), 227–289 (2010)
    • 3. Chen, F., Li, C., Llibre, J., Zhang, Z.: A unified proof on the weak Hilbert 16th problem for n = 2. J. Differ. Equ. 221(2), 309–342...
    • 4. Dumortier, F., Li, C.: Perturbations from an elliptic Hamiltonian of degree four. I. Saddle loop and two saddle cycle. J. Differ. Equ....
    • 5. Dumortier, F., Li, C.: Perturbations from an elliptic Hamiltonian of degree four. II. Cuspidal loop. J. Differ. Equ. 175(2), 209–243 (2001)
    • 6. Dumortier, F., Li, C.: Perturbations from an elliptic Hamiltonian of degree four. III. Global centre. J. Differ. Equ. 188(2), 473–511 (2001)
    • 7. Dumortier, F., Li, C.: Perturbation from an elliptic Hamiltonian of degree four. IV. Figure eight-loop. J. Differ. Equ. 188(2), 512–554...
    • 8. Gavrilov, L.: The infinitesimal 16th Hilbert problem in the quadratic case. Invent. Math. 143, 449–497 (2001)
    • 9. Grau, M., Mañosas, F., Villadelprat, J.: A Chebyshev criterion for abelian integrals. Trans. Amer. Math. Soc. 363(1), 109–129 (2011)
    • 10. Il’yashenko, Y., Yakovenko, S.: Double exponential estimate for the number of zeros of complete abelian integrals and rational envelopes...
    • 11. Li, C.: Abelian integrals and limit cycles. Qual. Theory Dyn. Syst. 11(1), 111–128 (2012)
    • 12. Liu, C.: Estimate of the number of zeros of abelian integral for elliptic hamiltonian with figure eightloop. Nonlinearity 16, 1151–1163...
    • 13. Liu, C., Xiao, D.: The monotonicity of the ratio of two Abelian integrals. Trans. Amer. Math. Soc. 365(10), 5525–5544 (2013)
    • 14. Liu, C., Xiao, D.: The smallest upper bound on the number of zeros of Abelian integrals. J. Differ. Equ. 269(4), 3816–3852 (2020)
    • 15. Novikov, D., Yakovenko, S.: Tangential hilbert problem for perturbations of hyperelliptic hamiltonian systems. Electron. Res. Announc....
    • 16. Petrov, G.S.: Elliptic integrals and their nonoscillation (Russian). Funct. Anal. i Prilo. 20(1), 46–49 (1986)
    • 17. Petrov, G.S.: Complex zeros of an elliptic integral. Func. Anal. Appl. 23(2), 160–161 (1989)
    • 18. Petrov, G.S.: Nonoscillation of elliptic integrals. Func. Anal. Appl. 24(3), 205–210 (1990)
    • 19. Petrov, G.S.: On the nonoscillation of elliptic integrals. Funct. Anal. Appl. 31(4), 262–265 (1997)
    • 20. Smale, S.: Mathematical problems for the next century. Math. Intelligencer. 20(2), 7–15 (1998)
    • 21. Sun, Y., Liu, C.: The Poincaré bifurcation of a SD oscillator. Discrete Contin. Dyn. Syst. Ser. B 26(3), 1565–1577 (2021)
    • 22. Sun, X., Wang, N., Yu, P.: The monotonicity of ratios of some Abelian integrals. Bull. Sci. Math. 166, 102934 (2021)
    • 23. Sun, X., Yu, P.: Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree 4. J. Differ....
    • 24. Wang, N., Xiao, D., Yu, J.: The monotonicity of the ratio of hyperelliptic integrals. Bull. Sci. Math. 138(7), 805–845 (2014)
    • 25. Zhao, Y., Zhang, Z.: Linear estimate of the number of zeros of abelian integrals for a kind of quartic hamiltonians. J. Differ. Equ. 155(1),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno