Ir al contenido

Documat


Instability and Bifurcation Phenomena in the Hide-Skeldon-Acheson Model: a Qualitative Approach

  • Shuangling Yang [1] ; Xinxin Liu [2]
    1. [1] Sichuan Normal University

      Sichuan Normal University

      China

    2. [2] Wenzhou University of Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 4, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The Hide-Skeldon-Acheson (HSA) model is a simplified representation of selfexciting dynamos for understanding the generation mechanism of magnetic fields in celestial bodies and the Earth, crucial for geophysical and astrophysical processes.

      In this paper, we analyze the bifurcation structures and instability mechanisms of the HSA model using tools from the qualitative theory of dynamical systems. We identify and classify various and rich bifurcations near equilibrium points, including pitchfork, Hopf, degenerate Hopf bifurcations, and Bogdanov-Takens bifurcations of codimension two, as well as homoclinic loop bifurcations. Additionally, we investigate the HSA model’s dynamics at infinity, revealing a global bifurcation phenomenon at infinity through a (local) saddle-node bifurcation. The physical interpretation of our analytic results is also discussed. These results provide new insights into the stability transitions and the underlying dynamical mechanisms governing the HSA model.

  • Referencias bibliográficas
    • 1. Dormy, E., Soward, A.M.: Mathematical aspects of natural dynamos. Chapman and Hall/CRC (2007)
    • 2. Busse, F.H.: Magnetohydrodynamics of the Earth’s dynamo. Annu. Rev. Fluid Mech. 10, 435–462 (1978)
    • 3. Jones, C.A., Longbottom, A.W., Hollerbach, R.: A self-consistent convection-driven geodynamo model, using a meaneld approximation. Phys....
    • 4. Hide, R.: The nonlinear differential equations governing a hierarchy of self-exciting coupled Faradaydisk homopolar dynamos. Phys. Earth...
    • 5. Childress, S., Gilbert, AD.: Stretch, twist and fold: the fast dynamo. Springer, (1995)
    • 6. Bullard, E.C.: The stability of a homopolar dynamo. Proc. Camb. Phil. Soc. 51, 744–760 (1955)
    • 7. Rikitake, T.: Oscillations of a system of disk dynamos. Proc. Camb. Phil. Soc. 54, 89–105 (1958)
    • 8. Hide, R.: Structural instability of the Rikitake disk dynamo. Geophys. Res. Lett. 22, 1057–1059 (1995)
    • 9. Hide, R.: The nonlinear differential equations governing a hierarchy of self-exciting coupled Faradaydisk homopolar dynamos. Phys. Earth...
    • 10. Plunian, F., Marty, P., Alemany, A.: Chaotic behaviour of the Rikitake dynamo with symmetrical mechanical friction and azimuthal currents....
    • 11. Ershov, S.V., Malinetskii, G.G., Ruzmaikin, A.A.: A generalized two-disk dynamo model. Geophys. Astrophys. Fluid Dynam. 47, 251–277 (1989)
    • 12. Hide, R., Skeldon, A.C., Acheson, D.J.: A study of two novel self-exciting single-disk homopolar dynamos: theory. Proc. Roy. Soc. Lond....
    • 13. Moroz, I.M.: The Hide, Skeldon, Acheson dynamo revisited. Proc. Roy. Soc. Lond. A 463, 113–130 (2007)
    • 14. Skeldon, A.C., Moroz, I.M.: On a codimension-three bifurcation arising in a simple dynamo model. Phys. D 117, 117–127 (1998)
    • 15. Li, X.: New insights to the Hide-Skeldon-Acheson dynamo. Discrete Contin. Dyn. Syst. Ser. B 27, 6257–6267 (2022)
    • 16. Mahdi, A., Valls, C.: Integrability of the Hide-Skeldon-Acheson dynamo. Bull. Sci. Math. 138, 470– 482 (2014)
    • 17. Xu, M., Shi, S., Huang, K.: The connection between the dynamical properties of 3D systems and the image of the energy-Casimir mapping....
    • 18. Huang, K., Shi, S., Yang, S.: Integrability and dynamics of the Poisson-Boltzmann equation in simple geometrie. Commun. Nonlinear Sci....
    • 19. Jiao, J., Huang, K., Liu, W.: Stationary shear flows of nematic liquid crystals: a comprehensive study via Ericksen-Leslie model. J. Dynam....
    • 20. Huang, K., Liu, W.: Dynamics of Poisson-Boltzmann equations: hidden mechanisms for GouyChapman layer and beyond. J. Differential Equations...
    • 21. Huang, K., Shi, S., Li, W.: Integrability analysis of the Shimizu-Morioka system. Commun. Nonlinear Sci. Numer. Simul. 84, 105101 (2020)
    • 22. Yang, S., Shi, S., Li, W.: On integrability of the segmented disc dynamo: the effect of mechanical friction. Z. Angew. Math. Phys. 73,...
    • 23. Yang, S., Qu, J.: On first integrals of a family of generalized Lorenz-like systems. Chaos, Solitons Fractals 151, 111141 (2021)
    • 24. Huang, K., Shi, S., Li, W.: Meromorphic and formal first integrals for the Lorenz system. J. Nonlinear Math. Phys. 25, 106–121 (2018)
    • 25. Swinnerton-Dyer, P., Wagenknecht, T.: Some third-order ordinary differential equations. Bull. Lond. Math. Soc. 40, 725–748 (2008)
    • 26. Meng, Q., Zhao, Y.: The dynamics of a self-exciting homopolar dynamo system. Phys. D 472, 134474 (2025)
    • 27. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1998)
    • 28. Chow, S., Li, C., Wang, D.: Normal forms and bifurcation of planar vector fields. Cambridge University Press, Cambridge (1994)
    • 29. Liu, M., Zheng, Z., Ma, C., Hu, D., Hopf and,: Bogdanov-Takens bifurcations of a delayed Bazykin model. Qual. Theory Dyn. Syst. 23(138),...
    • 30. Sharma, V., Singh, A., Malik, P.: Bifurcation patterns in a discrete predator-prey model incorporating ratio-dependent functional response...
    • 31. Gasull, A., Guillamon, A., Mañosa, V.: An explicit expression of the first Lyapunov and period constants with applications. J. Math. Anal....
    • 32. Messias, M., Gouveia, M., Pessoa, C.: Dynamics at infinity and other global dynamical aspects of Shimizu-Morioka equations. Nonlinear...
    • 33. Messias, M.: Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system. J. Phys. A 42,...
    • 34. Cima, A., Llibre, J.: Bounded polynomial vector fields. Trans. Amer. Math. Soc. 318, 557–579 (1990)
    • 35. Jiao, J., Yang, S., Zhou, Q., Huang, K.: On a simple model for describing convection of the rotating fluid: integrability, bifurcations...
    • 36. Llibre, J., Messias, M., da Silva, P.: Global dynamics in the Poincaré ball of the Chen system having invariant algebraic surfaces. Internat....
    • 37. Yang, S.: Integrability and dynamics of a low-dimensional model for glacial cycle: the effect of CO2 concentration. Commun. Nonlinear...
    • 38. Llibre, J., Messias, M.: Global dynamics of the Rikitake system. Phys. D 238, 241–252 (2009)
    • 39. Xu, M., Shi, S., Huang, K.: On the integrable stretch-twist-fold flow: bi-Hamiltonian structures and global dynamics. J. Math. Phys. 65,...
    • 40. Li, W., Shi, S., Yang, S.: On integrability of the Nosé-Hoover oscillator and generalized Nosé-Hoover oscillator. Int. J. Geom. Methods...
    • 41. Li, C., Rousseau, C.: Codimension 2 symmetric homoclinic loop and application to 1: 2 resonance. Canad. J. Math. 42, 191–212 (1990)
    • 42. Ovsyannikov, I.I., Turaev, D.: Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model. Nonlinearity 30,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno