Ir al contenido

Documat


Hopf and Bogdanov–Takens Bifurcations of a Delayed Bazykin Model

  • Ming Liu [1] ; Zhaowen Zheng [2] ; Cui-Qin Ma [1] ; Dongpo Hu [1]
    1. [1] Qufu Normal University

      Qufu Normal University

      China

    2. [2] Guangdong Polytechnic Normal University

      Guangdong Polytechnic Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-00996-z
  • Enlaces
  • Resumen
    • In this work, the Hopf and Bogdanov–Takens bifurcations of a delayed Bazykin predator–prey model with predator intraspecific interactions and ratio-dependent functional response are studied. Sufficient conditions for the existence of Hopf bifurcation are established. In the Bogdanov–Takens bifurcation, the dynamics near the nonhyperbolic equilibrium can be reduced to the study of the dynamics of the corresponding normal form restricted to the associated two-dimensional center manifold. Some numerical simulations, such as the distribution of eigenvalues, the bifurcation diagrams of Hopf and Bogdanov–Takens bifurcations and phase portraits, are given to illustrate the theoretical criteria. The theoretical and numerical simulation results illustrate that there is supercritical Hopf bifurcation and subcritical Bogdanov–Takens bifurcation in this model. We show that, the dynamics of prey and predator are very sensitive to parameters and delay perturbations which can play a great role in controlling and regulating the number of biological populations.

  • Referencias bibliográficas
    • 1. Li, S., Yuan, S.L., Jin, Z., Wang, H.: Bifurcation analysis in a diffusive predator–prey model with spatial memory of prey, Allee effect...
    • 2. Xiao, Q.Z., Dai, B.X.: Heteroclinic bifurcation for a general predator–prey model with Allee effect and state feedback impulsive control...
    • 3. Hu, D.P., Cao, H.J.: Stability and bifurcation analysis in a predator–prey system with Michaelis–Menten type predator harvesting. Nonlinear...
    • 4. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1925)
    • 5. Volterra, V.: Fluctuations in the abundance of species considered mathematically. Nature 118, 558–560 (1926)
    • 6. Lu, M., Huang, J.C.: Global analysis in Bazykin’s model with Holling II functional response and predator competition. J. Differ. Equ. 280,...
    • 7. Zhu, H.P., Campbell, S.A., Wolkowicz, G.S.K.: Bifurcation analysis of a predator–prey system with nonmonotonic function response. SIAM...
    • 8. Xiao, D.M., Zhu, H.P.: Multiple focus and Hopf bifurcations in a predator-prey system with nonmonotonic functional response. SIAM J. Appl....
    • 9. Hsu, S.B., Hwang, T.W., Kuang, Y.: Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system. J. Math. Biol. 42,...
    • 10. Ruan, S.G., Tang, Y.L., Zhang, W.N.: Versal unfoldings of predator–prey systems with ratio-dependent functional response. J. Differ. Equ....
    • 11. Gao, X.Y., Ishag, S., Fu, S.M., Li, W.J., Wang, W.M.: Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator–prey...
    • 12. Gutierrez, A.P.: The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson’s blowflies as an...
    • 13. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul....
    • 14. Hu, D.P., Yu, X., Zheng, Z.W., Zhang, C., Liu, M.: Multiple bifurcations in a discrete Bazykin predator– prey model with predator intraspecific...
    • 15. Zhao, X., Zeng, Z.J.: Stochastic dynamics of a two-species patch-system with ratio-dependent functional response. Qual. Theor. Dyn. Syst....
    • 16. Arditi, R., Ginzburg, L.R., Akcakaya, H.R.: Variation in plankton densities among lakes: a case for ratio dependent predation models....
    • 17. Hanski, I.: The functional response of predator: worries about scale. Trends Ecol. Evol. 6, 141–142 (1991)
    • 18. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific Series on Nonlinear Science, Series A, vol. 11. World Scientific,...
    • 19. Arancibia-Ibarra, C., Aguirre, P., Flores, J., van Heijster, P.: Bifurcation analysis of a predator–prey model with predator intraspecific...
    • 20. Das, B.K., Sahoo, D., Samanta, G.P.: Impact of fear in a delay-induced predator-prey system with intraspecific competition within predator...
    • 21. Gupta, A., Kumar, A., Dubey, B.: Complex dynamics of Leslie-Gower prey–predator model with fear, refuge and additional food under multiple...
    • 22. Benamara, I., El Abdllaoui, A.,Mikram, J.: Impact of time delay and cooperation strategyon the stability of a predator-prey model with...
    • 23. Liu, M., Meng, F.W., Hu, D.P.: Impacts of multiple time delays on a gene regulatory network mediated by small noncoding RNA. Int. J. Bifurc....
    • 24. Gakkhar, S., Singh, A.: Complex dynamics in a prey predator system with multiple delays. Commun. Nonlinear Sci. Numer. Simul. 17, 914–929...
    • 25. Yafia, R., Aziz-Alaoui, M.A., Merdan, H., Tewa, J.J.: Bifurcation and stability in a delayed predatorprey model with mixed functional...
    • 26. Singh, A., Parwaliya, A., Kumar, A.: Hopf bifurcation and global stability of density-dependent model with discrete delays involving Beddington–DeAngelis...
    • 27. Parwaliya, A., Singh, A., Kumar, A.: Hopf bifurcation in a delayed prey–predator model with prey refuge involving fear effect. Int. J....
    • 28. Hu, D.P., Li, Y.Y., Liu, M., Bai, Y.Z.: Stability and Hopf bifurcation for a delayed predator-prey model with stage structure for prey...
    • 29. Kundu, S., Maitra, S.: Dynamics of a delayed predator–prey system with stage structure and cooperation for preys. Chaos Solitons Fractals...
    • 30. Dubey, B., Kumar, A., Maiti, A.P.: Global stability and Hopf-bifurcation of prey–predator system with two discrete delays including habitat...
    • 31. Dubey, B., Kumar, A.: Dynamics of prey–predator model with stage structure in prey including maturation and gestation delays. Nonlinear...
    • 32. Das, M., Samanta, G.P.: A delayed fractional order food chain model with fear effect and prey refuge. Math. Comput. Simul. 178, 218–245...
    • 33. Li, B., Yuan, Z.M., Eskandari, Z.: Dynamics and bifurcations of a discrete-time Moran–Ricker model with a time delay. Mathematics 11,...
    • 34. Eskandari, Z., Alidousti, J., Avazzadeh, Z.: Rich dynamics of discrete time-delayed Moran–Ricker model. Qual. Theor. Dyn. Syst. 22, 98...
    • 35. Hadadi, J., Alidousti, J., Khoshsiar Ghaziani, R., Eskandari, Z.: Bifurcations and complex dynamics of a two dimensional neural network...
    • 36. Naik, P.A., Eskandari, Z.: Nonlinear dynamics of a three-dimensional discrete-time delay neural network. Int. J. Biomath. 17, 2350057...
    • 37. Liu, M., Meng, F.W., Hu, D.P.: Bogdanov–Takens and Hopf bifurcations analysis of a genetic regulatory network. Qual. Theor. Dyn. Syst....
    • 38. Tridane, A., Yafia, R., Aziz-Alaoui, M.A.: Targeting the quiescent cells in cancer chemotherapy treatment: Is it enough? Appl. Math. Model...
    • 39. Kayan, ¸S, Merdan, H., Yafia, R., Goktepe, S.: Bifurcation analysis of a modified tumor-immune system interaction model involving time...
    • 40. Najm, F., Yafia, R., Aziz-Alaoui, M.A.: Hopf bifurcation in oncolytic therapeutic modeling: viruses as anti-tumor means with viral lytic...
    • 41. Liu, Y.W., Liu, Z.R., Wang, R.Q.: Bogdanov–Takens bifurcation with codimension three of a predatorprey system suffering the additive Allee...
    • 42. Xu, Y., Huang, M.: Homoclinic orbits and Hopf bifurcations in delay differential systems with T-B singularity. J. Differ. Equ. 244, 582–598...
    • 43. Jiao, J.F., Chen, C.: Bogdanov–Takens bifurcation analysis of a delayed predator–prey system with double Allee effect. Nonlinear Dyn....
    • 44. Coccolo, M., Zhu, B.B., Sanjuán, M.A.F., Sanz-Serna, J.M.: Bogdanov–Takens resonance in timedelayed systems. Nonlinear Dyn. 91, 1939–1947...
    • 45. Jiang, J., Song, Y.L.: Delay-induced Bogdanov–Takens bifurcation in a Leslie–Gower predator–prey model with nonmonotonic functional response....
    • 46. Hu, D.P., Cao, H.J.: Stability and Hopf bifurcation analysis in Hindmarsh-Rose neuron model with multiple time delays. Int. J. Bifurc....
    • 47. Engelborghs, K.: DDE-BIFTOOL: a Matlab package for bifurcation analysis of delay differential equations. Tech. Rep. TW-305, Department...
    • 48. Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans....
    • 49. Faria, T., Magalhães, L.T.: Normal forms for retarded functional differential equations and applications to Bogdanov–Takens singularity....
    • 50. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory(3rd). Springer, New York (2004)
    • 51. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)
    • 52. Sternberg, N.: A Hartman–Grobman theorem for a class of retarded functional differential equations. J. Math. Anal. Appl. 176, 156–165...
    • 53. Naik, P.A., Eskandari, Z., Yavuz, M., Zu, J.: Complex dynamics of a discrete-time BazykinBerezovskaya prey–predator model with a strong...
    • 54. Cushing, J.M., Martins, F., Pinto, A.A., Veprauskas, A.: A bifurcation theorem for evolutionary matrix models with multiple traits. J....
    • 55. Zhang, Z.F., Dong, T.R., Huang, W.Z., Dong, Z.X.: Qualitative Theory of Differential Equations, Science Press, Beijing, (in Chinese):...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno