Ir al contenido

Documat


On the Sharp Existence of Normalized Ground State Solutions for Non-Autonomous Kirchhoff Equations

  • Miao Du [1] ; Xiaohan Gao [2]
    1. [1] Nanjing Normal University

      Nanjing Normal University

      China

    2. [2] Nanjing University of Finance and Economic
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we deal with a class of non-autonomous Kirchhoff equations, namely, −(a + b RN |∇u| 2 dx)u − μu = K(x)|u|p−2u in RN , where 1 ≤ N ≤ 4, a, b > 0 are constants,μ ∈ R is unknown and appears as a Lagrange multiplier, 2 < p < 2∗ and K ∈ C(RN , R) is a bounded potential function satisfying infRN K > 0. Under certain additional assumptions on the potential K, the sharp existence of normalized ground state solutions is obtained by investigating equivalently the associated L2-constrained minimization problem. Our main results extend and improve the corresponding results in the previous papers.

  • Referencias bibliográficas
    • 1. Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl....
    • 2. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Amer. Math. Soc. 348, 305–330 (1996)
    • 3. Carrier, G.F.: On the non-linear vibration problem of the elastic string. Quart. Appl. Math. 3, 157–165 (1945)
    • 4. Chen, C.Y., Kuo, Y.C., Wu, T.F.: The Nehari manifold for a Kirchhoff type problem involving signchanging weight functions. J. Differential...
    • 5. Chen, S.T., R˘adulescu, V.D., Tang, X.H.: Normalized solutions of nonautonomous Kirchhoff equations: sub- and super-critical cases. Appl....
    • 6. Chipot, M., Lovat, B.: Some remarks on non local elliptic and parabolic problems. Nonlinear Anal. 30, 4619–4627 (1997)
    • 7. Deng, Y.B., Peng, S.J., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3. J. Funct....
    • 8. Figueiredo, G.M., Ikoma, N., Santos Junior, J.R.: Existence and concentration result for the Kirchhoff type equations with general nonlinearities,...
    • 9. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in Rn. Adv. Math. Suppl. Stud. 7A, 369–402...
    • 10. Guo, Z.J.: Ground states for Kirchhoff equations without compact condition. J. Differential Equations 259, 2884–2902 (2015)
    • 11. Guo, H.L., Wang, Y.B.: A remark on a constrained variational problem. Acta Math. Sci. Ser. B 37A, 1125–1128 (2017)
    • 12. He, Y., Li, G.B.: Standing waves for a class of Kirchhoff type problems in R3 involving critical Sobolev exponents. Calc. Var. Partial...
    • 13. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3. J. Differential Equations...
    • 14. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
    • 15. Kwong, M.K.: Uniqueness of positive solutions of u − u + u p = 0 in RN . Arch. Ration. Mech. Anal. 105, 243–266 (1989)
    • 16. Li, G.B., Ye, H.Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3. J. Differential Equations...
    • 17. Lions, J.L.: On some questions in boundary value problems of mathematical physics. North-Holland Math. Stud. 30, 284–346 (1978)
    • 18. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part I, Ann. Inst. Henri...
    • 19. Luo, X., Wang, Q.F.: Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in R3. Nonlinear...
    • 20. Ma, T.F., Muñoz Rivera, J.E.: Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett. 16 243-248...
    • 21. Mao, A.M., Zhang, Z.T.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70,...
    • 22. Nhan, N., Ngoc, L., Long, N.: On a nonlinear wave equation of Kirchhoff-Carrier type: Linear approximation and asymptotic expansion of...
    • 23. Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differential Equations 221, 246–255 (2006)
    • 24. Qi, S.J., Zou, W.M.: Exact number of positive solutions for the Kirchhoff equation. SIAM J. Math. Anal. 54, 5424–5446 (2022)
    • 25. Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differential Equations 259, 1256–1274...
    • 26. Tang, X.H., Cheng, B.T.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differential Equations...
    • 27. Wang, J., Tian, L.X., Xu, J.X., Zhang, F.B.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical...
    • 28. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87, 567–576 (1983)
    • 29. Xie, W.H., Chen, H.B.: Existence and multiplicity of normalized solutions for nonlinear Kirchhoff-type problems. Comput. Math. Appl. 76,...
    • 30. Xie, Q.L., Ma, S.W., Zhang, X.: Bound state solutions of Kirchhoff type problems with critical exponent. J. Differential Equations 261,...
    • 31. Xu, L., Li, F., Xie, Q.L.: Existence and multiplicity of normalized solutions with positive energy for the Kirchhoff equation. Qual. Theor....
    • 32. Ye, H.Y.: The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations. Math. Methods Appl. Sci. 38, 2663–2679...
    • 33. Ye, H.Y.: The existence of normalized solutions for L2-critical constrained problems related to Kirchhoff equations. Z. Angew. Math. Phys....
    • 34. Ye, H.Y., Zhang, L.N.: The existence and nonexistence of global L2-constrained minimizers for Kirchhoff equations with L2-subcritical...
    • 35. Zeng, X.Y., Zhang, Y.M.: Existence and uniqueness of normalized solutions for the Kirchhoff equation. Appl. Math. Lett. 74, 52–59 (2017)
    • 36. Zhang, F.B., Du, M.: Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well. J....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno